Math 322 worksheet for Wednesday, Week 7
Definition. An equilibrium point for a system of differential equations in \mathbb{R}^{n}

$$
x^{\prime}=f(x)
$$

is a point $p \in \mathbb{R}^{n}$ such that $f(p)=0$.
The reason for the terminology is that if p is an equilibrium point then a solution (the solution if f is continuously differentiable) with initial condition $x(0)=p$ is the constant solution $x(t)=p$.
We hope to get a qualitative sense of the solutions to our system near an equilibrium point p by replacing the system with a linear approximation:

$$
x^{\prime}=J f_{p}
$$

where $J f_{p}$ is the Jacobian matrix for f at p.
Consider the system of equations

$$
\begin{aligned}
x^{\prime} & =\left(x^{2}-1\right) y \\
y^{\prime} & =\left(1-y^{2}\right)\left(x+\frac{3}{10} y\right) .
\end{aligned}
$$

So in this case $f(x, y)=\left(\left(x^{2}-1\right) y,\left(1-y^{2}\right)\left(x+\frac{3}{10} y\right)\right)$.
Problem 1. Find all equilibrium points for the system and plot them in the plane.
Problem 2. Compute the Jacobian matrix $J f_{(x, y)}$ for our f at an arbitrary point (x, y).

Problem 3 For each equilibrium point p, analyze the linear system

$$
\binom{x^{\prime}}{y^{\prime}}=J f_{p}\binom{x}{y}
$$

by looking at the eigenvalues of $J f_{p}$. Do you get a saddle? A stable focus or node? An unstable focus or node? A center? (See the last page for a quick guide.)

Problem 4. What does the vector field look like along the line $x=1$ and along the line $x=-1$? What can you say about the special behavior of solutions with an initial condition $\left(\pm 1, y_{0}\right)$? Interpret this geometrically.

Problem 5. What does the vector field look like along the line $y=1$ and along the line $y=-1$? What can you say about the special behavior of solutions with an initial condition $\left(x_{0}, \pm 1\right)$? Interpret this geometrically.

Let $A \in M_{2}(\mathbb{R})$. Let τ be the trace of A, and let δ be the determinant of A. The characteristic polynomial for A will factor as

$$
\begin{aligned}
p(x) & =\left(\lambda_{1}-x\right)\left(\lambda_{2}-x\right) \\
& =x^{2}-\left(\lambda_{1}+\lambda_{2}\right) x+\lambda_{1} \lambda_{2} \\
& =x^{2}-\tau x+\delta
\end{aligned}
$$

where λ_{1} and λ_{2} are the eigenvalues of A. Setting $p(x)=0$ and solving gives an alternate description of the eigenvalues:

$$
x=\frac{\tau \pm \sqrt{\tau^{2}-4 \delta}}{2}
$$

If $\delta=0$, then at least one of the eigenvalues is zero, and we have a degenerate system.
$\delta=0$ degenerate.
$\delta<0$ real eigenvalues, opposite signs \Rightarrow saddle.
$\delta>0, \tau^{2}-4 \delta \geq 0$ real eigenvectors, same signs \Rightarrow node.
$\tau<0 \Rightarrow$ stable node
$\tau>0 \Rightarrow$ unstable node.
$\delta>0, \tau^{2}-4 \delta<0$ nonreal eigenvectors \Rightarrow swirling vector field.
$\tau<0 \Rightarrow$ stable focus
$\tau>0 \Rightarrow$ unstable focus
$\tau=0 \Rightarrow$ center.

