Math 322 worksheet for Wednesday, Week 7
Definition. An equilibrium point for a system of differential equations in \mathbb{R}^{n}

$$
x^{\prime}=f(x)
$$

is a point $p \in \mathbb{R}^{n}$ such that $f(p)=0$.
The reason for the terminology is that if p is an equilibrium point then a solution (the solution if f is continuously differentiable) with initial condition $x(0)=p$ is the constant solution $x(t)=p$.
We hope to get a qualitative sense of the solutions to our system near an equilibrium point p by replacing the system with a linear approximation:

$$
x^{\prime}=J f_{p}
$$

where $J f_{p}$ is the Jacobian matrix for f at p.
Consider the system of equations

$$
\begin{aligned}
x^{\prime} & =\left(x^{2}-1\right) y \\
y^{\prime} & =\left(1-y^{2}\right)\left(x+\frac{3}{10} y\right) .
\end{aligned}
$$

So in this case $f(x, y)=\left(\left(x^{2}-1\right) y,\left(1-y^{2}\right)\left(x+\frac{3}{10} y\right)\right)$.
Problem 1. Find all equilibrium points for the system and plot them in the plane.
solution: We need to solve the system

$$
\begin{aligned}
\left(x^{2}-1\right) y & =0 \\
\left(1-y^{2}\right)\left(x+\frac{3}{10} y\right) & =0
\end{aligned}
$$

The top equation is satisfied if and only if $x= \pm 1$ or $y=0$. Consider these two cases separately. If $x= \pm 1$, then the second equation is satisfied if and only if $y= \pm 1$ or $y= \pm 10 / 3$ (the latter depending on the sign of x). Thus, in the first case, we find the equilibrium points

$$
(\pm 1, \pm 1),\left(1,-\frac{10}{3}\right),\left(-1, \frac{10}{3}\right)
$$

Next, consider the case where $y=0$. The second equation then gives $x=0$. So we get a seventh equilibrium point at the origin: $(0,0)$.

Problem 2. Compute the Jacobian matrix $J f_{(x, y)}$ for our f at an arbitrary point (x, y).
solution: We have

$$
f(x, y)=\left(\left(x^{2}-1\right) y,\left(1-y^{2}\right)\left(x+\frac{3}{10} y\right)\right)
$$

So

$$
J f_{(x, y)}=\left(\begin{array}{cc}
2 x y & x^{2}-1 \\
1-y^{2} & -2 y\left(x+\frac{3}{10} y\right)+\frac{3}{10}\left(1-y^{2}\right)
\end{array}\right)
$$

Problem 3. For each equilibrium point p, analyze the linear system

$$
\binom{x^{\prime}}{y^{\prime}}=J f_{p}\binom{x}{y}
$$

by looking at the eigenvalues of $J f_{p}$. Do you get a saddle? A stable focus or node? An unstable focus or node? A center? (See the last page for a quick guide.)

SOLUTION:
$(0,0)$

$$
J f_{(0,0)}=\left(\begin{array}{cc}
0 & -1 \\
1 & \frac{3}{10}
\end{array}\right)
$$

The trace is $\tau=\frac{3}{10}$ and the determinant is $\delta=1$. So $\delta>0, \tau>0$, and

$$
\tau^{2}-4 \delta=\frac{9}{100}-4<0
$$

This means the origin is an unstable focus. (The characteristic polynomial has two unreal eigenvalues and the real parts of the eigenvalues are positive.)
$(1,1)$

$$
J f_{(1,1)}=\left(\begin{array}{cc}
2 & 0 \\
0 & -\frac{13}{5}
\end{array}\right)
$$

The determinant is $\delta<0$. This means we have a saddle.
$(1,-1)$

$$
J f_{(1,-1)}=\left(\begin{array}{cc}
-2 & 0 \\
0 & \frac{7}{5}
\end{array}\right)
$$

The determinant is $\delta<0$, another saddle.
$(-1,1)$

$$
J f_{(-1,1)}=\left(\begin{array}{cc}
-2 & 0 \\
0 & \frac{7}{5}
\end{array}\right)
$$

The determinant is $\delta<0$, another saddle.
$(-1,-1)$

$$
J f_{(-1,-1)}=\left(\begin{array}{cc}
2 & 0 \\
0 & -\frac{13}{10}
\end{array}\right)
$$

The determinant is $\delta<0$, another saddle.
$\left(1,-\frac{10}{3}\right)$

$$
J f_{(1,-10 / 3)}=\left(\begin{array}{cc}
-\frac{20}{3} & 0 \\
-\frac{91}{9} & -\frac{91}{30}
\end{array}\right) .
$$

The determinant is $\delta>0, \tau<0$, and

$$
\tau^{2}-4 \delta=\left(-\frac{97}{10}\right)^{2}-4\left(-\frac{20}{3}\right)\left(-\frac{91}{30}\right)=-8153 / 90<0
$$

Therefore, we get a stable node: two real eigenvalues, both negative.
$\left(-1, \frac{10}{3}\right)$

$$
J f_{(-1,10 / 3)}=\left(\begin{array}{cc}
-\frac{20}{3} & 0 \\
-\frac{91}{9} & -\frac{97}{30}
\end{array}\right)
$$

which is the same matrix we had at $\left(1,-\frac{10}{3}\right)$. Therefore, we get another stable node: two real eigenvalues, both negative.

Problem 4. What does the vector field look like along the line $x=1$ and along the line $x=-1$? What can you say about the special behavior of solutions with an initial condition $\left(\pm 1, y_{0}\right)$? Interpret this geometrically.

SOLUTION: The vector field along the line $x=1$ is

$$
f(1, y)=\left(0,\left(1-y^{2}\right)\left(1+\frac{3}{10} y\right)\right)
$$

The second coordinate is 0 if $y= \pm 1$ or if $y=-10 / 3$. So we have the following cases:

$$
\begin{gathered}
y \in(1, \infty) \Rightarrow f(1, y)_{2}<0 \\
y \in(-1,1) \Rightarrow f(1, y)_{2}>0 \\
y \in(-10 / 3,-1) \Rightarrow f(1, y)_{2}<0 \\
y \in(-\infty,-10 / 3) \Rightarrow f(1, y)_{2}>0
\end{gathered}
$$

Trajectories starting at a point on the line $x=1$ at a point below $y=-10 / 3$ or between $y=-10 / 3$ and $y=-1$ get sucked into the equilibrium point $(1,-10 / 3)$. Trajectories starting at a point on the line $x=1$ at a point above $y=-1$ get sucked into the equilibrium point at $(1,1)$.
The case for $x=-1$ is similar. We show the picture for $x= \pm 1$ and $y= \pm 1$ in the solution to problem 5, below.

Problem 5. What does the vector field look like along the line $y=1$ and along the line $y=-1$? What can you say about the special behavior of solutions with an initial condition $\left(x_{0}, \pm 1\right)$? Interpret this geometrically.

SOLUTION:

Here is a picture of the vector field (normalized so that each arrow has the same length):

Here is a picture of the flow of the vector field:

The vector fields near the equilibrium points $(-1,10 / 3)$ and $(1,-10 / 3)$ both look like this:

The linearizations at both $(-1,10 / 3)$ and $(1,-10 / 3)$ are the same:

$$
\begin{aligned}
& x^{\prime}=-\frac{20}{3} x \\
& y^{\prime}=-\frac{91}{9} x-\frac{91}{30} y
\end{aligned}
$$

and the vector field looks like:

EQUILIBRIUM POINTS FOR LINEAR SYSTEMS IN \mathbb{R}^{2}
Let $A \in M_{2}(\mathbb{R})$. Let τ be the trace of A, and let δ be the determinant of A. The characteristic polynomial for A will factor as

$$
\begin{aligned}
p(x) & =\left(\lambda_{1}-x\right)\left(\lambda_{2}-x\right) \\
& =x^{2}-\left(\lambda_{1}+\lambda_{2}\right) x+\lambda_{1} \lambda_{2} \\
& =x^{2}-\tau x+\delta
\end{aligned}
$$

where λ_{1} and λ_{2} are the eigenvalues of A. Setting $p(x)=0$ and solving gives an alternate description of the eigenvalues:

$$
x=\frac{\tau \pm \sqrt{\tau^{2}-4 \delta}}{2}
$$

If $\delta=0$, then at least one of the eigenvalues is zero, and we have a degenerate system.
$\delta=0$ degenerate.
$\delta<0$ real eigenvalues, opposite signs \Rightarrow saddle.
$\delta>0, \tau^{2}-4 \delta \geq 0$ real eigenvectors, same signs \Rightarrow node.
$\tau<0 \Rightarrow$ stable node
$\tau>0 \Rightarrow$ unstable node.

```
\delta>0, \tau
    \tau<0=> stable focus
    \tau>0=> unstable focus
    \tau=0=> center.
```


saddle

