
Math 322 lecture for Friday, Week 7

Dependence on parameters, maximal interval

Here we mention a couple of fairly immediate refinements of the fundamental existence
and uniqueness theorem. Consider our usual initial value problem:

x′ = f(x) (1)

x(0) = x0

where f : E → Rn is continuously differentiable on the open subset E ⊂ Rn and
x0 ∈ E. The first refinement (dependence on parameters) says that if we deform f
smoothly and move x0 slightly, then the solution deforms smoothly. The second
refinement says that the solution x(t) to our initial value problem exists on a uniquely
determined maximal interval about t = 0.

Theorem. (Dependence on parameters.) Let E be an open subset of Rn+m contain-
ing the point (x0, µ0) where x0 ∈ Rn and µ0 ∈ Rm, and assume f ∈ C1(E). Then
there is a neighborhood1 N(x0) ⊆ Rn of x0, a neighborhood N(µ0) ⊆ Rm of µ0, and
an a > 0 such that for all y ∈ N(x0) and for all µ ∈ N(µ0), the initial value problem

x′ = f(x, µ)

x(0) = y

has a unique solution x = x(t, y, µ) with x ∈ C1(R) where R := [−a, a] × N(x0) ×
N(µ0).

Example. Let A ∈ Mn(R) and x0 ∈ Rn. Then the solution to the system x′ = Ax
with x(0) = x0 is x(t, x0, A) = eAtx0, which is a smooth function of t, A, and x0. In
this case, m =

(
n
2

)
, and we identify a point µ ∈ Rm with a matrix Aµ whose entries,

read from left-to-right, top-to-bottom form µ. Thus, f(x, µ) = Aµx.

Theorem. Consider our initial value problem with f ∈ C1(E) and initial condi-
tion x0. There is an interval J = (α, β) with α, β ∈ R ∪ {±∞} and a solution x(t)
defined for t ∈ J such that if y(t) is any other solution defined on an interval I,
then I ⊆ J and x(t) = y(t) on I. Further, if β ∈ R, i.e., if β 6= ∞, then given
any compact (closed and bounded) subset K ⊂ E, then there exists t ∈ J such
that x(t) /∈ K.

The interval J is called the maximal interval of existence and is clearly uniquely
determined.

1A neighborhood of a point is any set that contains an open set containing the point.
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Stable manifold theorem

Last lecture, we started investigating the effect of replacing f(x) with Dfx0 in (1)
at an equilibrium point x0, i.e., at a point where f(x0) = 0. The first theorem we’ll
consider which makes this comparison precise is the stable manifold theorem. To state
the theorem we need to formally introduce the flow of a vector field, and the idea of
a manifold.

Flow. For each x0 ∈ E, let I(x0) be the maximal interval of existence of the solution
to (1) with initial condition x0. Then let

Ω := {(t, x0) ∈ R× E : t ∈ I(x0)} .

For each (t, x0) ∈ Ω, let φ(t, x0) be the solution to (1) with initial condition x0
evaluated at time t ∈ I(x0). This defines a mapping

φ : Ω→ Rn

called the flow of the vector field f : E → Rn. For each t ∈ I(x0) we define

φt(x0) := φ(t, x0).

Our text (Section 2.5) establishes the following properties for the flow:

(a) φ0(x0) = x0

(b) φs(φt(x0)) = φs+t(x0)

(c) φ−t(φt(x0)) = x0

wherever these expressions make sense.

Example. Consider the case of a linear system, in which f(x) = Ax for some
A ∈Mn(R). Here E = Rn, and for each x0 ∈ Rn, the solution is

φt(x0) = x(t) = eAtx0,

and the maximal interval of existence is I(x0) = R. So Ω = Rn+1, and the above
properties for the flow are easily verified in this special case. For instance,

φs(φt(x0)) = eAs(eAtx0) = eA(s+t)x0 = φs+t(x0).
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Manifolds. Roughly speaking, a manifold is a object that can be constructed from
a collection of open subsets of Rn and a set of instructions for gluing these open
sets together. A quintessential example is given by an ordinary world atlas. Each
page consists of a flattened out map of a piece of the earth. There will be pairs of
pages that overlap along boundaries representing the same regions. The drawings
of features of the earth on these pages implicitly provide instructions for gluing the
pages together. If the pages where made of moldable putty, then it would be possible
to piece these pages together to make a shape. One possible result, among others
would be a sphere, and so we say the sphere is a manifold. It is two-dimensional
since we glue together open subsets of R2 to make it. We now move on to the formal
definition.

Definition. A metric space is a set X with a distance function or metric,

d : X ×X → R

that is positive definite, symmetric, and obeys the triangle inequality:

(a) d(x, y) ≥ 0 with d(x, y) = 0 if and only if x = y

(b) d(x, y) = d(y, x)

(c) d(x, y) ≤ d(x, z) + d(z, y).

Every metric space (X, d) is a topological space where a subset U ⊆ X is open if for
each u ∈ U , there exists r > 0 such that the open ball of radius r centered at u is
contained in U :

B(u, r) := {x ∈ X : d(u, x) < r} ⊆ U.

Definition. Two subsets A,B of a metric space X are homeomorphic if there exists a
continuous bijection f : A→ B with continuous inverse. The mapping f is then called
a homeomorphism from A to B. (More generally, two topological spaces U, V are
homeomorphic if there is a continuous bijection f : U → V with continuous inverse.)

Definition. An n-dimensional differentiable manifold is a connected metric space2 M
and an open covering {Uα} (so for each α in some index set, Uα is an open subset
of M and M = ∪αUα) such that:

2More generally, M could be a second-countable Hausdorff toplogical space.
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(a) for all α, there is a homeomorphism

hα : Uα → Vα

where Vα is an open subset of Rn, and

(b) if Uα ∩ Uβ 6= ∅, the mapping

hβ ◦ h−1α : hα(Uα ∩ Uβ)→ hβ(Uα ∩ Uβ)

is continuously differentiable.

Each pair (hα, Uα) is called a chart, and the collection of charts is called an atlas.
The mapping hβ ∩ h−1α are transition functions.

To go back to the rough description we made earlier: each chart (hα, Uα) represents
a page hα(Uα) in the atlas. The set Uα is a piece of the manifold (earth), and the
mapping hα is the rendering of that piece of the earth onto a flat piece of paper.
On overlaps Uα ∩ Uβ on the manifold the corresponding pages of the atlas have
overlaps hα(Uα∩Uβ) and hβ(Uα∩Uβ). We can glue these together with the transition
function hβ ◦ h−1α .

Theorem. (Stable manifold theorem.) Let E ⊆ Rn and let f ∈ C1(E). Suppose
that f(0) = 0 and that Df0 has k eigenvalues with negative real part and n − k
eigenvalues with positive real part. Then there exists a k-dimensional differentiable
manifold S tangent to the stable subspace Es of the linearized system x′ = Df0(x)
at 0 and there exists an (n− k)-dimensional differentiable manifold U tangent to the
unstable space Eu of the linearized system. Further

lim
t→∞

φt(x0) = 0

for any x0 ∈ S and
lim
t→−∞

φ(x0) = 0

for any x0 ∈ U .
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