
Math 322 lecture for Wednesday, Week 4

Review of diagonalization. For a diagonal matrix D = diag(λ1, . . . , λn), we have

Dei = λiei

for each standard basis vector ei. If A ∈ Mn(F ) is not diagonal, we look for linearly
independent vectors that behave like the ei above:

Avi = λivi.

If we can find n of these vectors, then changing to the basis {v1, . . . , vn}, these vi are
transformed to the standard basis vectors in the new coordinates, and A is diagonal-
ized.

Therefore, we look for vectors v 6= 0 such that

Av = λv

for some λ ∈ F . We have

Av = λv ⇔ (A− λIn)v = 0 ⇔ v ∈ ker(A− λIn).

The kernel is nonzero if and only if det(A − λIn) = 0. So to find suitable λ, the
eigenvalues, we consider the characteristic polynomial

p(x) = det(A− xIn) =
n∏
j=1

(λj − x) =
∏̀
j=1

(µj − x)kj .

In the expression on the far right, repeated eigenvalues are grouped together (so
each µj is equal to some λt). The algebraic multiplicity of the eigenvalue µj is kj. The
eigenvectors corresponding to µj form a subspace of F n called the eigenspace for µj:

Eµj := ker(A− µjIn).

The dimension of Eµj is the geometric multiplicity of µj. We always have that the
geometric multiplicity is at most the algebraic multiplicity:

dimEµj ≤ kj.

The matrix A is diagonalizable if and only if there is a basis consisting of eigenvectors,
and that happens exactly when the geometric multiplicity of each eigenvalue equals
it algebraic multiplicity. If that is not the case, we can still choose bases for each
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eigenspace, but we are then left with the task of completing this set to a full basis
for F n. By choosing correctly, we can assure that A has a nice form.

jordan form

Let λ ∈ F . A k × k Jordan block for λ is a k × k matrix with λ appearing along the
diagonal and 1s appearing on the superdiagonal:

Jk(λ) :=



λ 1
λ 1

λ 1
. . .

1
λ


.

0

0

For example,

J4(2) =


2 1 0 0
0 2 1 0
0 0 2 1
0 0 0 2

 .

A Jordan matrix is a square block-diagonal matrix with Jordan matrices along the
diagonal:

J :=



Jk1(λ1)
Jk2(λ2)

Jk3(λ3)
. . .

Jk`(λ`).


.

0

0

For example, the following is a Jordan matrix:

2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 4 1 0 0 0 0
0 0 0 4 1 0 0 0
0 0 0 0 4 0 0 0
0 0 0 0 0 i 1 0
0 0 0 0 0 0 i 0
0 0 0 0 0 0 0 2 + 3i


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with Jordan blocks J1(2), J1(2), J3(4), J2(i) and J1(2 + 3i).

A diagonal matrix is a Jordan matrix whose Jordan blocks are all 1× 1.

Theorem. Let A ∈Mn(C). Then there exists an invertible matrix P ∈Mn(C) such
that P−1AP = J where J is a Jordan matrix. The matrix J is called the Jordan
form for A. It is unique up to a permutation of the Jordan blocks. The diagonal
entries of J are exactly the eigenvalues of A repeated according to their algebraic
multiplicities (the number of times the eigenvalue appears in a factorization of the
characteristic polynomial of A over C). The number of blocks having a particular
eigenvalue λ along the diagonal is the geometric multiplicity of λ (i.e., dim(A−λIn)).

Example. A matrix is diagonalizable if and only if each of its Jordan blocks is 1×1.
For example, we know

A =

(
1 1
0 1

)
is not diagonalizable since it is already in Jordan form and it’s not diagonal. The
matrix A has one eigenvalue, 1, of multiplicity 2, but the dimension of the eigenspace
for 1 is 1-dimensional:

ker(A− 1 · I2) = ker

(
0 1
0 0

)
= {(x, 0) : x ∈ F} ,

which has basis {(1, 0)}. As claimed the number of Jordan blocks for 1 is the geometric
multiplicity of 1.

Jordan form over the reals. Now suppose that A ∈ Mn(R). Then it turns out
that we can conjugate A via a real matrix it to a real matrix that is almost as nice
as the Jordan form over C. Since A is defined over the reals, its nonreal eigenvalues
appear in conjugate pairs, and it turns out that each k×k Jordan block for λ = a+bi
has a corresponding k×k Jordan block for λ̄ = a− bi of the same dimension. We can
combine these blocks and change basis to get a corresponding 2k × 2k block matrix
with 2× 2 blocks of the form (

a −b
b a

)
along the diagonal, and the 2×2 identity matrix I2 appearing along the super diagonal.
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For instance, the Jordan matrix
λ 1 0 0 0 0
0 λ 1 0 0 0
0 0 λ 0 0 0
0 0 0 λ̄ 1 0
0 0 0 0 λ̄ 1
0 0 0 0 0 λ̄


where λ = a+ bi can be conjugated to the form

a −b 1 0 0 0
b a 0 1 0 0
0 0 a −b 1 0
0 0 b a 0 1
0 0 0 0 a −b
0 0 0 0 b a


If A ∈ Mn(R), there exists an invertible P ∈ Mn(R) such that P−1AP = J where J
consists of Jordan blocks—the usual ones for real eigenvalues, and these modified
block matrices for conjugate pairs of complex eigenvalues. The form is unique up to
permutation of the blocks and swaps(

a −b
b a

)
←→

(
a b
−b a

)
.

We will call it the real Jordan form for A. Here is a typical real Jordan form for a
real matrix: 

4 0 0 0 0 0 0 0 0 0
0 4 1 0 0 0 0 0 0 0
0 0 4 1 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0 0
0 0 0 0 3 −2 0 0 0 0
0 0 0 0 2 3 0 0 0 0
0 0 0 0 0 0 3 −2 1 0
0 0 0 0 0 0 2 3 0 1
0 0 0 0 0 0 0 0 3 −2
0 0 0 0 0 0 0 0 2 3


There are two Jordan blocks for 4: one is 1×1 and one is 3×3. The other eigenvalues
for this matrix are 3+2i and 3−2i, each of which appears with multiplicity 3. Notice
there are two real Jordan blocks for the pair 3±2i, one is 2×2 and the other is 4×4.
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