
Math 322 lecture for Monday, Week 4

linear systems in R2

Let A ∈ M2(R). The characteristic polynomial has real coefficients and degree 2.
That means that if λ is a complex eigenvalue for A (with nonzero imaginary part),
then so is its conjugate λ̄. Otherwise, A either has two distinct real eigenvalues or
one real eigenvalue with multiplicity 2. In order to exponentiate A, it would be nice
to conjugate A (i.e., apply the mapping A→ P−1AP for some P ) to a matrix that is
close to being diagonal. We will discuss the Jordan form more carefully later, but for
now it suffices to know that there exists an invertible real matrix P such that P−1AP
has one of the three possible forms below:(

u 0
0 v

)
,

(
u 1
0 u

)
, and

(
a −b
b a

)
,

where u, v, a, b ∈ R. The first case occurs when A has eigenvalues u and v (including
the case where u = v occurs with multiplicity 2) and A is diagonalizable. The second
case occurs when A has the real eigenvalue u with multiplicity 2 but the corresponding
eigenspace only has dimension 1. The last case occurs when A has a pair of complex
eigenvalues λ = a + bi and λ = a − bi. (If we were working over C, then in this
last case A could be conjugated to the diagonal matrix diag(λ, λ̄), as we will discuss
below.)

To solve two-dimensional linear systems, we need to exponentiate matrices with these
forms. The first is easy:

exp

(
u 0
0 v

)
=

(
eu 0
0 ev

)
.

For the second, let’s exponentiate a slightly more general matrix:

B :=

(
u v
0 u

)
.

Let

C =

(
0 v
0 0

)
,

and note that (i) B = uI +C, (ii) Ck = 0 for k > 1, and (iii) uI and C commute. It
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follows that

eB = euI+C = euIeC =

(
eu 0
0 eu

)
eC = euIeC = eueC

= eu
(
I + C +

1

2
C2 +

1

3!
C3 + . . .

)
= eu (I + C)

=

(
eu veu

0 eu

)
.

Now consider the last case, in which

J =

(
a −b
b a

)
.

Letting

Q =

(
i −i
1 1

)
we have

Q−1JQ =
1

2i

(
1 i
−1 i

)(
a −b
b a

)(
i −i
1 1

)

=
1

2i

(
1 i
−1 i

)(
ai− b −ai− b
a+ bi a− bi

)

=
1

2i

(
2ai− 2b 0

0 2ai+ 2b

)

=

(
a+ bi 0

0 a− bi

)
=

(
λ 0
0 λ̄

)
.

Therefore, using the fact that

eλt = eat+bti = eat(cos(bt) + i sin(bt)) and eλ̄t = eat−bti = eat(cos(bt)− i sin(bt)),

we have

e

 a −b
b a

t
= Qediag(λ,λ̄)tQ−1
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=
1

2i

(
i −i
1 1

)(
eλt 0

0 eλ̄t

)(
1 i
−1 i

)

=
1

2i

(
i −i
1 1

)(
eλt ieλt

−eλ̄t ieλ̄t

)

=
1

2i

(
ieλt + ieλ̄t −eλt + eλ̄t

eλt − eλ̄t ieλt + ieλ̄t

)

= eat
(

cos(bt) − sin(bt)
sin(bt) cos(bt)

)
.

Let’s look at the corresponding systems of differential equations and their solutions
with initial condition x0:

If J =

(
u 0
0 v

)
then the solution is

x(t) =

(
eut 0
0 evt

)
x0.

If both u and v are negative, the origin is a stable node (u = −1, v = −2 displayed):

.

If u and v are both positive, the origin is an unstable node (u = 1, v = 2 displayed):
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.

If one of u and v is negative and the other is positive, the origin is a saddle point
(u = −1, v = 2 displayed):

.

If J =

(
u 1
0 u

)
then

eJt = exp

(
u t
0 u

)
=

(
eu teu

0 eu

)
and the solution is

x(t) =

(
eut teut

0 eut

)
x0.

If u < 0, the origin is a stable node (u = −2 displayed):
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.

and if it is positive, then the origin is an unstable node (u = 2 displayed):

.

If J =

(
a −b
b a

)
then the solution is

x(t) = eat
(

cos(b) − sin(b)
sin(b) cos(b)

)
x0.

If a < 0, then each solution spirals into the origin and we say the origin is a stable
focus (a = −1, b = 2 displayed):
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.

If a > 0, then each solution spirals away from the origin, and we say the origin is an
unstable focus (a = 1, b = 2 displayed):

.

If a = 0, each solution goes in a circle about the origin, and we say that the system
has a center at the origin (a = 0, b = −2 displayed):

.

In any of these cases, if b > 0 the motion is counterclockwise, and if b < 0, the motion
is clockwise.
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We’ve discussed all cases in which both eigenvalues are nonzero. If either of the
eigenvalues is zero, i.e., if det(A) = 0, then the origin is a degenerate equilibrium
point. See our text for pictures of these systems.

Lemma. Let A ∈Mn(F ) with eigenvalues λ1, . . . , λn. Then

(a) trace(A) :=
∑n

i=1Aii =
∑n

i=1 λi and det(A) =
∏n

i=1 λi.

(b) Consider the characteristic polynomial of A:

p(x) = det(A− xIn).

Then the coefficient of xn−1 in p(x) is (−1)n−1trace(A) and the constant term
of p(x) is det(A).1

Proof. Recall that for all C,D ∈Mn(F ), we have

trace(CD) = trace(DC)

and
det(CD) = det(C) det(D) = det(D) det(C) = det(DC).

Therefore, for all invertible P ∈Mn(F ),

trace(P−1AP ) = trace(A) and det(P−1AP ) = det(A).

Further, the characteristic polynomial is not affected by conjugation:

det(P−1AP−xIn) = det(P−1(A−xIn)P ) = det(P−1) det(A−xIn) det(P ) = det(A−xI).

Therefore, we may assume that A is in Jordan form—an upper triangular matrix.
Considering p(x) = det(A−xI), we see the diagonal entries are the eigenvalues, λ1 . . . , λn.
Part (a) follows. Next, consider the characteristic polynomial

det(A− xIx) = p(x) = (λ1 − x) · · · (λn − x).

Expanding the right-hand side, we see that the coefficient of xn−1 is trace(A). Set-
ting x = 0 in the above equation then completes the proof of part (b).

Let’s now go back to the case n = 2. Let τ := trace(A) and δ := det(A). Up to
conjugation, there are three possibilities:

1The characteristic polynomials is sometimes defined to be p(x) = det(xIn − A). In that case,
the coefficient of xn−1 is −trace(A). The constant term is again det(A).
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(
u 0
0 v

)
τ = u+ v

δ = uv

(
u 1
0 u

)
τ = 2u

δ = u2

(
a −b
b a

)
τ = 2a

δ = a2 + b2

The characteristic polynomial is

p(x) = x2 − τ x+ δ.

So the eigenvalues are
τ ±
√
τ 2 − 4δ

2
. (1)

Theorem. (p. 25)

(a) If δ < 0, then the origin is a saddle point.

(b) If δ > 0 and τ 2−4δ ≥ 0, then the origin is a stable node if τ < 0 and an unstable
node if τ > 0. (Note that in this case, the conditions δ > 0 and τ 2 − 4δ ≥ 0
imply τ 6= 0.)

(c) If δ > 0 and τ 2 − 4δ < 0, then the origin is a stable focus if τ < 0, an unstable
focus if τ > 0, or a center if τ = 0 (in which case τ − 4δ < 0 is automatic).

Proof. If δ < 0, then equation 1 shows that one eigenvalue is positive and the other is
negative. Hence, the origin is a saddle point. That proves the first part. The others
follow similarly.

Calling a stable node or focus a sink and calling an unstable node or focus a source,
we get the following diagram:
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