Math 322 lecture for Monday, Week 4

LINEAR SYSTEMS IN R?

Let A € My(R). The characteristic polynomial has real coefficients and degree 2.
That means that if A is a complex eigenvalue for A (with nonzero imaginary part),
then so is its conjugate A. Otherwise, A either has two distinct real eigenvalues or
one real eigenvalue with multiplicity 2. In order to exponentiate A, it would be nice
to conjugate A (i.e., apply the mapping A — P! AP for some P) to a matrix that is
close to being diagonal. We will discuss the Jordan form more carefully later, but for
now it suffices to know that there exists an invertible real matrix P such that P~1AP
has one of the three possible forms below:

u 0 u 1 a —b

<0 v)’ (0 u)’ and (b a)’
where u, v, a,b € R. The first case occurs when A has eigenvalues u and v (including
the case where u = v occurs with multiplicity 2) and A is diagonalizable. The second
case occurs when A has the real eigenvalue v with multiplicity 2 but the corresponding
eigenspace only has dimension 1. The last case occurs when A has a pair of complex
eigenvalues A = a + bi and A = a — bi. (If we were working over C, then in this
last case A could be conjugated to the diagonal matrix diag()\, \), as we will discuss
below.)

To solve two-dimensional linear systems, we need to exponentiate matrices with these

forms. The first is easy:
ox u 0\ (e 0
Plo o) Lo e )

For the second, let’s exponentiate a slightly more general matrix:

=i 0)
C—(g 8)

and note that (i) B = ul + C, (ii) C¥ =0 for k > 1, and (iii) u/ and C' commute. It



follows that

e 0
eBzeuI+C:€uI€C:( 0 eu)eCzeuIeczeueC

_u 1 2 1 3
=e <I+C+§C +§C —1—)
e’ (I+0C)

e* ve

0 e '

Now consider the last case, in which

Letting

we have

1/ 1 i a —b i —i
—1 _ =
? JQ_Qi(—l z><b a )(1 1)
_l 1 4 ai—b —ai—0b
T2\ —1 g a+bi a—bi
1 [ 2ai—2b 0
20 0 2ai + 2b

[ a+bi 0 B )\(_)
- 0 a—bi o 0o X/

Therefore, using the fact that

M = MM — oo (cog(bt) + isin(bt)) and M = ™V = e (cos(bt) — isin(bt)),

we have

( b o )
t —
N b «a _ Qediag()\,/\)tQ—l
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Let’s look at the corresponding systems of differential equations and their solutions
with initial condition xg:

IfJ= ( g 8 ) then the solution is

If both u and v are negative, the s a stable node (u = —1,v = —2 displayed):

\\\w//\

If w and v are both positive, the origin is an unstable node (u = 1,v = 2 displayed):




-1

12 one (ifg ar;ddzijs ;ayed): and the other is positive, the origin is a saddle point
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If a > 0, then each solution spirals away from the origin, and we say the origin is an
unstable focus (a = 1,b = 2 displayed):

1_/‘//"__\

r

If a = 0, each solution goes in a circle about the origin, and we say that the system
has a center at the origin (a = 0,b = —2 displayed):

TR \

Z

|
b
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In any of these cases, if b > 0 the motion is counterclockwise, and if b < 0, the motion
is clockwise.
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We’ve discussed all cases in which both eigenvalues are nonzero. If either of the
eigenvalues is zero, i.e., if det(A) = 0, then the origin is a degenerate equilibrium
point. See our text for pictures of these systems.

Lemma. Let A € M, (F) with eigenvalues Ay, ..., \,. Then
(a) trace(A) :=> " Ay => 1 N\ and det(A) =], A\
(b) Consider the characteristic polynomial of A:

p(z) = det(A — z1,).

Then the coefficient of "' in p(z) is (—1)"*trace(A) and the constant term
of p(z) is det(A).!

Proof. Recall that for all C, D € M, (F), we have
trace(C'D) = trace(DC)

and
det(C'D) = det(C) det(D) = det(D) det(C) = det(DC).

Therefore, for all invertible P € M, (F),

trace(P~'AP) = trace(A) and det(P 'AP) = det(A).
Further, the characteristic polynomial is not affected by conjugation:
det(P'AP—x1,) = det(P*(A—xI,)P) = det(P ') det(A—x1,) det(P) = det(A—al).

Therefore, we may assume that A is in Jordan form—an upper triangular matrix.
Considering p(x) = det(A—=z1), we see the diagonal entries are the eigenvalues, Ay ..., A,.
Part (a) follows. Next, consider the characteristic polynomial

det(A—zl,)=plx) =N —x) - (A\y — 2).

Expanding the right-hand side, we see that the coefficient of 2" ! is trace(A). Set-
ting x = 0 in the above equation then completes the proof of part (b). O

Let’s now go back to the case n = 2. Let 7 := trace(A) and § := det(A). Up to
conjugation, there are three possibilities:

!The characteristic polynomials is sometimes defined to be p(x) = det(zI, — A). In that case,
the coefficient of z"~! is —trace(A). The constant term is again det(A).
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u 0 u 1 a —b
0 v 0 u b a
T=u+v T=2u T=2a
§ =uv § = u? § = a®+ b
The characteristic polynomial is
plz) =2 —724+94

So the eigenvalues are
TEVTE 40
5 )

Theorem. (p. 25)

(a) If 6 < 0, then the origin is a saddle point.

(b) If & > 0 and 72 —44 > 0, then the origin is a stable node if 7 < 0 and an unstable
node if 7 > 0. (Note that in this case, the conditions § > 0 and 72 — 4§ > 0

imply 7 # 0.)

(c) If § > 0 and 72 — 4 < 0, then the origin is a stable focus if 7 < 0, an unstable

focus if 7 > 0, or a center if 7 =0 (in which case 7 — 4 < 0 is automatic).

Proof. 1f 6 < 0, then equation 1 shows that one eigenvalue is positive and the other is
negative. Hence, the origin is a saddle point. That proves the first part. The others

follow similarly.

]

Calling a stable node or focus a sink and calling an unstable node or focus a source,

we get the following diagram:



stable unstable
focus focus

unstable
node

CCIIver

saddle



