
Math 322 lecture for Friday, Week 4

exponentiation of jordan matrix

To solve the linear system x′ = Ax, we need to compute eAt. If P−1AP = J where J
is the Jordan form of A, then eAt = PeJtP−1. Then, to exponentiate J , we must
exponentiate each of its blocks. If

J :=



Jk1(λ1)
Jk2(λ2)

Jk3(λ3)
. . .

Jk`(λ`)


,

0

0

then

eJt :=



eJk1 (λ1)t

eJk2 (λ2)t

eJk3 (λ3)t

. . .

eJk` (λ`t)


.

0

0

Thus, we are reduced to exponentiating Jordan blocks, which we talk about here,
starting with an example. Let λ ∈ F and consider the Jordan block

J4(λ) =


λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

 =


λ 0 0 0
0 λ 0 0
0 0 λ 0
0 0 0 λ

+


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 = λI4 +N4

where

N4 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 .

Since λI4 and N4 commute,

eJ4(λ)t = e(λI4+N4)t = eλtI4etN4 .
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As usual,

eλtI4 =


eλt 0 0 0
0 eλt 0 0
0 0 eλt 0
0 0 0 eλt

 = eλtI4.

So we are left with computing etN4 :

eN4t = I4 + tN4 +
t2

2!
N2

4 +
t3

3!
N3

4 +
t4

4!
N4

4 +
t5

5!
N5

4 + · · ·

Consider the powers of N4:

N2
4 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0



N3
4 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


N4

4 = 0.

All higher powers of N4 are 0. Notice how as we take powers, the diagonal of 1s
climbs up to the right along successively higher diagonals.

Returning to the calculation,

eJ4(λt) = eλt
(
I4 + tN4 +

t2

2!
N2

4 +
t3

3!
N3

4

)

= eλt


1 t t2

2!
t3

3!

0 1 t t2

2!

0 0 1 t

0 0 0 1

 =


eλt teλt t2

2!
eλt t3

3!
eλt

0 eλt teλt t2

2!
eλt

0 0 eλt teλt

0 0 0 eλt

 .
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For instance, the solution to x′ = J4(λ)x with initial condition x0 = (4, 3, 2, 1) is

x(t) = eJ4(λ)tx0

= eλt


1 t t2

2!
t3

3!

0 1 t t2

2!

0 0 1 t

0 0 0 1




4
3
2
1



= eλt


4 + 3t+ 2 t

2

2!
+ t3

3!

3 + 2t+ t2

3!

2 + t
1

 ,

or

x(t) = eλt
(

4 + 3t+ 2
t2

2!
+
t3

3!
, 3 + 2t+

t2

3!
, 2 + t, 1

)
.

Now consider a general Jordan block:

Jk(λ) = λIk +Nk

where Nk is the matrix with 1s along the superdiagonal. As before, taking powers
of Nk causes the diagonal of 1 to march up to the right, and we get Nk

k = 0. A
matrix N such that Nk = 0 is called nilpotent. The minimum k such that Nk = 0 is
the degree of nilpotency. Thus, Nk is nilpotent of degree k. We have

eJk(λ)t = e(λIk+Nk)t = eλtIkeNkt

= eλt
(
Ik + tNk +

t2

2
N2
k +

t3

3!
N3
k + · · ·+ tk−1

(k − 1)!
Nk−1
k

)

= eλt



1 t t2

2!
. . . . . . tk−1

(k−1)!

0 1 t . . . . . . tk−2

(k−2)!

0 0 1 . . . . . . tk−3

(k−3)!
. . .

...
...

...

0 . . . . . . 0 1 t

0 . . . . . . . . . 0 1


.
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Note. If the real part of λ is negative, notice how

lim
t→∞

eJk(λ)t = 0.

Working exclusively over the reals, we will need to exponentiate Jordan blocks corre-
sponding to pairs of conjugate eigenvalues. Let

M :=

(
a −b
b a

)
and consider a real Jordan block for λ = a+ bi with b 6= 0:

J :=



M I2 0 . . . . . . 0

0 M I2 . . . . . . 0

0 0 M . . . . . . 0

. . .
...

...
...

0 . . . . . . 0 M I2

0 . . . . . . . . . 0 M


.

To exponentiate, let

R :=

(
cos(bt) − sin(bt)
sin(bt) cos(bt)

)
.

So
eMt = eatR.

By an argument that is essentially the same as just given above, we get the matrix
of 2× 2 blocks

eJt = eat



R tR t2

2!
R . . . . . . tk−1

(k−1)!R

0 R tR . . . . . . tk−2

(k−2)!R

0 0 R . . . . . . tk−3

(k−3)!R

. . .
...

...
...

0 . . . . . . 0 R tR

0 . . . . . . . . . 0 R


.

Again, notice that if Re(λ) = a < 0, then

lim
t→∞

eJt = 0.
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Algorithm for computing the Jordan form. Our book has a careful discussion
of an algorithm for computing the Jordan form of a matrix A. We will not go into
the details (unless there is demand for it!). Here, we’ll give over a couple of points,
though. To start the algorithm, compute the eigenvalues of the matrix by finding the
zeros of the characteristic polynomial. We would like to know the number of Jordan
blocks for each eigenvalue and their sizes. The key to this is as follows: Let λ be an
eigenvalue, and consider the sequence of integers

δ` := δ`(λ) := dim ker(A− λI)`

for ` = 0, 1, 2, . . . . These δ` are invariant with respect to conjugation, so we
might as well imagine that A is in Jordan form already and work block-
by-block. For a Jordan block Jk(µ) with µ 6= λ,

ker(Jk(µ)− λI)` = 0

for all ` since each diagonal entry of each power is nonzero. So the δ`(λ) for any block
like this are all 0. Now consider each Jordan block of the form Jk(λ). We have

ker(Jk(λ)− λI)` = kerN `
k

where Nk is the nilpotent matrix from earlier. Thinking about the form of N `
k is it

easy to see that the δ` sequence for blocks like these is

δ` =

{
` for 0 ≤ ` ≤ k,

k for ` > k.

See Figure 1 for the case where k = 4.

The δ`(λ)-sequence for A is the sum of the δ`(λ)-sequences for each of its Jordan
blocks. For instance, δ1(λ) for A is the number of its Jordan blocks for λ—we’ve just
seen that each of these contributes its δ1 = 1 to the count. With just a little more
thought (see our text), letting νk be the number of k × k Jordan blocks for λ for
the n× n matrix A, we get

νk =


2δ1 − δ2 for k = 1,

2δk − δk+1 − δk−1 for 1 < k < n,

δn − δn−1 for k = n.

The point is that the numbers of Jordan blocks of each size for each eigenvalue are
determined by the δ-sequences, i.e, by the sequence of dimensions of the kernels,
ker(A− λI)`.
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k (A− λI)k basis for kernel dimension

1


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 e1 1

2


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 e1, e2 2

3


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 e1, e2, e3 3

4


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 e1, e2, e3, e4 4.

Figure 1: The case where A = J4(λ).

To actually conjugate A to Jordan form, for each eigenvalue λ, we consider the tower
of subspaces

ker(A− λI) ⊆ ker(A− λI)2 ⊆ ker(A− λI)3 ⊆ . . .

Starting at the leftmost kernel in this tower of subsets, we could successively build
bases for these kernels, adding vectors as we move to the right, as we could see
earlier in the case where A = J4(λ). Appropriately chosen, these vectors are called
generalized eigenvectors. We use them as columns of a matrix P so that P−1AP is
the Jordan form for A

Let’s consider the case where

A = J4(λ) =


λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

 .
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Notice that we have

Ae1 = λe1, Ae2 = e1 + λe2, Ae3 = e2 + λe3, Ae4 = e3 + λe4.

Therefore,

(A− λI)e1 = 0

(A− λI)e2 = e1

(A− λI)e3 = e2

(A− λI)e4 = e3,

and (A−λI)i+1ei = 0 for i = 2, 3, 4. So if A is not in Jordan form already, we will look
for vectors v1, . . . , v4 that behave like the ei, above. We need to solve (A−λI)vi = vi−1
starting with v1 an eigenvector with eigenvalue λ. These vi will be columns in the
matrix P .
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