
Math 322 lecture for Wednesday, Week 3

From now on, page references are to our text. Recall that we will always be working
over the field F = R or C.

Definition. A sequence (vk) in a normed vector space (V, ‖ ‖) is a Cauchy sequence
if for all ε > 0 there exists N ∈ R such that for all m,n > N , we have

‖vn − vm‖ < ε.

A theorem from analysis says that if V is finite-dimensional then it is complete: a
sequence (vk) converges if and only if it is a Cauchy sequence.

Lemma. (Weierstrass M -test) Let V and W be normed vector spaces with V finite-
dimensional. For each k ≥ 0, let fk : W → V be a function. Let C ⊆ W , and suppose
there exists a sequence (Mk)k of positive numbers such that

‖fk(x)‖ ≤Mk

for all x ∈ C and for all k. Suppose further that
∑

k Mk converges. Then
∑

k fk is
absolutely and uniformly convergent on C.

Proof. A sequence in a normed space over F converges if and only if it’s a Cauchy
sequence. Let ε > 0. Since

∑
k Mk converges, there exists N ∈ R such that for

all n ≥ m > N , we have

|
∑n

k=0 Mk −
∑m

k=0Mk| = |
∑n

k=m+1 Mk| < ε.

But then for n ≥ m > N is follows that for all x ∈ C

‖
∑n

k=m+1 fk(x)‖ ≤
∑n

k=m+1 ‖fk(x)‖ ≤
∑n

k=m+1Mk < ε.

Thus
∑

k fk is uniformly Cauchy. �

We are now ready to prove that it makes sense to exponentiate a matrix:

Theorem. For all A ∈Mn(F ) and t0 > 0, the function R→Mn(F ) given by

t 7→
∑
k≥0

Aktk

k!

converges absolutely and uniformly for t ∈ [−t0, t0].
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Proof. Let a := ‖A‖ and suppose that |t| ≤ t0. Then from Lemma 1 in the previous
lecture, ∥∥∥∥Aktk

k!

∥∥∥∥ ≤ ‖A‖k|t|kk!
≤ ‖A‖

ktk0
k!

=
aktk0
k!

=: Mk.

It follows that ∑
k≥0

Mk = eat0 ,

the usual exponential function. The result follows by the Weierstrass M -test.

Definition. Let A ∈Mn(F ) and t ∈ R. Then

eAt :=
∑
k≥0

Aktk

k!
.

Note: The proof of the previous theorem shows that eAt is absolutely convergent and
uniformly convergent on any closed interval for t. Further,

‖eAt‖ ≤ e‖A‖|t|.

To rigorously prove this last statement, note that∥∥∥∥∥
n∑

k=0

Aktk

k!

∥∥∥∥∥ ≤
n∑

k=0

∥∥∥∥Aktk

k!

∥∥∥∥ =
n∑

k=0

‖A‖k|t|k

k!

The norm is a continuous function and hence commutes with limits, and limits pre-
serve inequalities. It therefore follows that

‖eAt‖ =

∥∥∥∥∥ lim
n→∞

n∑
k=0

Aktk

k!

∥∥∥∥∥ = lim
n→∞

∥∥∥∥∥
n∑

k=0

Aktk

k!

∥∥∥∥∥ = lim
n→∞

n∑
k=0

‖A‖k|t|k

k!
= e‖A‖t||.

Proposition. (p. 13) Let A,P ∈Mn(F ) with P invertible. Then

eP
−1AP = P−1eAP.
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Proof. Recall the trick from linear algebra:

(P−1AP )k = (P−1AP )(P−1AP )(P−1AP ) · · · (P−1AP )

= P−1A(PP−1)A(PP−1)A(P · · ·P−1)AP
= P−1AkP.

Therefore,

eP
−1AP :=

∑
k≥0

(P−1AP )k

k!

=
∑
k≥0

(
P−1

Ak

k!
P

)

= P−1

(∑
k≥0

Ak

k!

)
P

= P−1eAP.

The matrices P−1 and P can be pulled out of the sum since multiplication by these
represent linear transformations, which are continuous, and the sum is a limit—limits
commute with continuous functions (by definition of continuity).

Proposition. (p. 13) Let A,B ∈Mn(F ). If A and B commute, then e(A+B) = eAeB.

Proof.

e(A+B) =
∑
n≥0

1

n!
(A + B)n

=
∑
n≥0

1

n!

(∑
i+j=n

n!

i!j!
AiBj

)

=
∑
i≥0

1

i!
Ai

(∑
j≥0

1

j!
Bj

)

= eAeB.
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Corollary. (p. 13) If A ∈Mn(F ), then

e−A =
(
eA
)−1

.

Proof. Since A and −A commute,

In = e0 = e(A+(−A)) = eAe−A.

Example. The above proposition only holds, in general, if the matrices A and B
commute. Consider,

A =

(
0 1
0 0

)
and B =

(
1 0
0 2

)
It is easy to check that AB 6= BA.

Since Ak = 0 for k > 1,

eA = I + A =

(
1 1
0 1

)
,

and

eB =
∑
k≥0

1

k!

(
1 0
0 2

)k

=
∑
k≥0

1

k!

(
1k 0
0 2k

)
=
∑
k≥0

(
1/k! 0

0 2k/k!

)
=

(
e 0
0 e2

)
.

Thus,

eAeB =

(
e e2

0 e2

)
.

On the other hand, you can check by induction that

(A + B)k =

(
1 2k − 1
0 2k

)
.

Hence,

eA+B =
∑
k≥0

1

k!

(
1 2k − 1
0 2k

)
=

(
e e2 − e
0 e2

)
6= eAeB.
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