
Math 322 lecture for Monday, Week 3

Let F = R or C, and let Mn(F ) denote n × n matrices with coefficients in F . The
derivative of a curve x(t) = (x1(t), . . . , xn(t)) in F n with respect to t gives the curve’s
tangent direction or velocity at time t:

ẋ := x′(t) :=

(
dx1
dt
, . . . ,

dxn
dt

)
.

We are interested in finding x such that

x′ = Ax

and satisfying some initial condition x(0) = x0 ∈ F n. If n = 1, then A = a ∈ F , and
we have already seen the solution x = x0e

at = eatx0. It turns out that the solution in
the case n = 1 is just a space case of the solution for n ≥ 1:

x = eAtx0. (1)

Our first goal is to make sense of equation (1) (e.g., what does it mean to exponentiate
a matrix?) and then prove that it is the unique solution.

Definition. A norm on a vector space V over F is a mapping

‖ ‖ : V → R

satisfying

1. (positive definite) ‖v‖ ≥ 0 for all v ∈ V , and ‖v‖ = 0 if and only if v = 0.

2. (absolute homogeneity) ‖αv‖ = |α|‖v‖ for all v ∈ V and α ∈ F .

3. (triangle inequality) ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ V .

Examples. The usual absolute value on F n is a norm. If F = R, we have

‖x‖ := |x| :=
√
x · x =

√∑
j x

2
j

and if F = C, we have

‖x‖ := |x| =
√
x · x̄ =

√∑
j |xj|2.
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Note: if xj = aj + bji with aj, bj ∈ R, then

‖x‖ = |x| =
√∑

j(a
2
j + b2j),

which is the length of x ∈ Cn thought of as a vector in R2n. As indicated above, we
use the usual absolute value notation, |x| for this norm.

The case n = 1 says the usual absolute value on F is a norm on F .

Given a norm ‖ ‖ on a vector space V , we can define a metric on V (i.e., a distance
function) by

d(v, w) := ‖v − w‖.

The following properties of this distance function are easy to verify:

1. (positive definite) d(v, w) ≥ 0 for all v, w ∈ V , and d(v, w) = 0 if and only if v = w.

2. (symmetry) d(v, w) = d(w, v) for all v, w ∈ V .

3. (triangle inequality) d(u,w) ≤ d(u, v) + d(v, w) for all u, v, w ∈ V .

The following proposition implies that two norms on a vector space will define the
same topology (“sense of closeness”) on that space:

Proposition. Let ‖ ‖1 and ‖ ‖2 be two norms on a finite-dimensional vector space V
over F . Then these norms are equivalent in the following sense: there exist positive
real numbers a, b such that

a‖v‖2 ≤ ‖v‖1 ≤ b‖v‖2

for all v ∈ V .

Sketch of proof.

Step 1. If the displayed set of inequalities holds, say ‖ ‖1 ∼ ‖ ‖2. Prove that ∼ is
an equivalence relation.

Step 2. By Step 1, it suffices to prove the result when ‖ ‖2 = | |, the usual absolute
value norm, discussed above, and ‖ ‖1 is arbitrary. There is nothing to prove if v = 0,
since any positive constants a and b work in that case. Assume from now an that
v 6= 0. Then, dividing through by |v| and using properties of the norm, we see
that a|v| ≤ ‖v‖1 ≤ b|v| is equivalent to a ≤ ‖u‖1 ≤ b where u = v/|v| has (usual)
norm |u| = 1.

2



Step 3. Show that v → ‖v‖1 is a continuous function with respect to | |. That is,
given v ∈ V and ε > 0, show there exists δ > 0 such that if w ∈ V and |v − w| < δ,
then

| ‖v‖1 − ‖w‖1 | < ε.

Step 4. Apply the extreme value theorem, a continuous function on a compact set
(closed and bounded) achieves a minimum and a maximum value. In our case, the
compact set is {u ∈ V : ‖u‖1 = 1} and the minimum and maximum values are the
desired constants a and b, respectively.

Definition. The operator norm on the vector space Mn(F ) of n × n matrices with
coefficients in F is given by

‖A‖ := max
|x|≤1
|Ax|.

for each A ∈Mn(F ) where | | is the usual norm on F .

Remarks.

1. For the identity matrix, we have ‖In‖ = 1.

2. The real number ‖A‖ is the most that A scales any vector:

‖A‖ = max
x 6=0

A

(
x

|x|

)
= max

x 6=0

|Ax|
|x|

.

Thus, |Ax| ≤ ‖A‖|x| for all x ∈ F n. A detailed proof will be given below.

3. When trying to define a norm on Mn(F ), it might seem more natural to just
think of an n × n matrix as an element of F n2

and use the usual norm on F n2
.

However, the norm we have just described is easier to work with and, according
to the proposition given above, it is equivalent to any other norm on Mn(F ).

Lemma 1. For all A,B ∈Mn(F ) and x ∈ F n,

1. |Ax| ≤ ‖A‖|x|.

2. ‖AB‖ ≤ ‖A‖‖B‖.

3. ‖Ak‖ ≤ ‖A‖k.
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Proof. For part 1, first note that the inequality holds when x = 0. So suppose
that x 6= 0, and let u = x

|x| . We have that |u| = 1, and hence,

|Ax|
|x|

=

∣∣∣∣A x

|x|

∣∣∣∣ = |Au| ≤ max
|y|≤1
|Ay| = ‖A‖.

Multiplying through by |x| gives |Ax| ≤ ‖A‖x|, as desired.

For part 2, note that for all x ∈ F n with |x| ≤ 1, we have from part 1,

|(AB)(x)| = |A(Bx)| ≤ ‖A‖|Bx| ≤ ‖A‖‖B‖|x| ≤ ‖A‖‖B‖.

Therefore,
‖AB‖ := max

|x|≤1
|(AB)(x)| ≤ ‖A‖‖B‖.

Part 3 follows from part 2.

Definition. Let (vk)k=0,1,... be a sequence in a normed vector space (V, ‖ ‖). We say

lim
k
vk = v

for some vector v ∈ V if for all ε > 0 there exists N ∈ R such that

‖v − vk‖ < ε

whenever k ≥ N . A series
∑∞

k=0 vk converges to v if its sequence of partial sums v0,
v0 + v1, v0 + v1 + v2,. . . converges to v.

Theorem. For all A ∈Mn(F ) and t0 > 0, the function R→Mn(F ) given by

t 7→
∑
k≥0

Aktk

k!

converges absolutely and uniformly for t ∈ [−t0, t0].

Before proving this theorem, let’s review the notions of absolute and uniform conver-
gence of series of functions. First, a series

∑
k vk in a normed vector space (V, ‖ ‖) is

absolutely convergent if
∑

k ‖vk|| converges. If a series is absolutely convergent then
every rearrangement of the series will converge.

Let V and W be normed vector spaces, and let C ⊆ W . (For instance, we could
take W = R and C = [−t0, t0].) For each n ≥ 0, let fn : W → V be a function. The
sequence (fn) converges uniformly to f : W → V on C if for all ε > 0, there exists
an N(ε) ∈ R such that for all x ∈ C,

‖f(x)− fn(x)‖ < ε
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whenever n > N(ε). Note: the word “uniform” refers to the fact that N(ε) is
independent of x.

The notion of uniform convergence makes sense for a series
∑

k fk since a series is
just a sequence of partial sums.
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