
Math 322 lecture for Friday, Week 2

V. Method of undetermined coefficients.

We look at one more example of the method of undetermined coefficients. Consider
the equation

y′′ − 2y′ + y = t cos(3t).

We guess a particular solution of the form

y = (a0 + a1t) cos(3t) + (b0 + b1t) sin(3t).

Then

y′ = (a1 + 3b0 + 3b1t) cos(3t) + (−3a0 + b1 − 3a1t) sin(3t)

y′′ = (−9a0 + 6b1 − 9a1t) cos(3t) + (−6a1 − 9b0 − 9b1t) sin(3t)

So we have

y′′ − 2y′ + y = (−8a0 − 2a1 − 6b0 + 6b1 − (8a1 + 6b1)t) cos(3t)

+ (6a0 − 6a1 − 8b0 − 2b1 + (6a1 − 8b1)t) sin(3t)

Set this equal to t cos(3t) and compare coefficients to get the system on linear equa-
tions

0 = −8a0 − 2a1 − 6b0 + 6b1

1 = −8a1 − 6b1

0 = 6a0 − 6a1 − 8b0 − 2b1

0 = 6a1 − 8b1

Solving this system gives the particular solution

yp = − 1

250
(13 + 20 t) cos (3 t)− 3

250
(−3 + 5 t) sin (3 t) .

The corresponding homogeneous equation, y′′ − 2y′ + y = 0, has a general solution
aet + btet. So the general solution to our inhomogeneous equation is

y = aet + btet − 1

250
(13 + 20 t) cos (3 t)− 3

250
(−3 + 5 t) sin (3 t)

Let’s again consider the initial conditions y(0) = 1 and y′(0) = −2. Plugging these
into the general solution and its derivative allow us to determine a and b. The result
is

y =
263

250
et − 77

25
tet − 1

250
(13 + 20 t) cos (3 t)− 3

250
(−3 + 5 t) sin (3 t) .
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Graph of solution:
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VI. A. Second-order. Given a second-order equation of the form

H(t, y′, y′′) = 0

i.e., missing a y-term, we can reduce the order of the equation with the substitu-
tion v = y′.

Example. Consider the equation

ty′′ + 4y′ = t2.

Substitute v = y′ to get the equation

tv′ + 4v = t2.

If t 6= 0, this becomes the standard first-order equation

v′ +
4

t
v = t.

Say t > 0. Then the integrating factor is exp
(∫

4
t
dt
)

= t4. Multiplying through (and
using the product rule), we have

t4 v′ + 4t3 v = (t4v)′ = t5.

Integrate:

t4v =
1

6
t6 + c.

Now substitute back v = y′:

t4y′ =
1

6
t6 + c.
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This is separable:

y′ =
1

6
t2 +

c

t4
⇒ y =

1

18
t3 − 1

3
· c
t3

+ b

=
1

18
t3 +

a

t3
+ b.

Suppose the initial conditions are y(1) = 1 and y′(1) = 2. Then

1 =
1

18
+ a+ b

2 =
1

6
− 3a,

which implies a = −11/18 and b = 14/9. The solution is

y =
1

18
t3 − 11

18

1

t3
+

14

9
.

Graph of solution:
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Solutions defined near t = 0? Our method of forcing the equation into the form of
a standard first-order equation requires dividing by t, and hence, assumes that t 6= 0.
What if we really want a solution defined near t = 0? My approach was to suppose
the solution can be expanded in terms of a power series y = a0 +a1t+a2t

2 + . . . Plug
this series into the equation ty′′ + 4y′ and set the result equal to t2. Now compare
coefficients and hope we can solve for the ai. If you think about it, we only need to
consider series where ai = 0 for i ≥ 4. So assume y = a0 + a1t+ a2t

2 + a3t
3. We have

ty′′ + 4y′ = t(2a2 + 6a3t) + 4(a1 + 2a2t+ 3a3t
2)

= 4a1 + 10a2t+ 18a3t
2.
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Setting the result equal to t2 and comparing coefficients gives a1 = a2 = 0, and a3 =
1/18. The solution is

y = a0 +
1

18
t3.

Graph of solution with initial condition y(0) = 1:
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Note that the only possibly initial condition for y′(0) is y′(0) = 0 (why?). Since this
is a second-order equation, we’d expect to be able to set initial conditions for both y
and y′. We should try to remember to come back to this example when we talk about
existence and uniqueness of solutions.

VI. B. Second-order equation.

Given a second-order equation of the form

H(y, y′, y′′) = 0

i.e., missing t, we again make the substitution v = y′, but then use the chain rule like
so

y′′ =
dv

dt
=
dv

dy

dy

dt
= v

dv

dy
.

Substituting, our original equation becomes

H

(
y, v, v

dv

dy

)
= 0.

After we find v as a function of y, we solve for y by integrating, as before.

Example. Consider the equation

y′′ + (y′)
3
y = 0.
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Let v = y′ and substitute as above to get

v
dv

dy
+ v3y = 0.

This is first-order linear, but even better, it is separable. Supposing v > 0, the
equation becomes

1

v2
dv

dy
= −y.

Integrate: ∫
1

v2
dv = −

∫
y dy ⇒ −1

v
= −1

2
y2 + c̃

⇒ v =
2

y2 − 2c̃

⇒ v =
2

y2 + c
.

Now substitute back in v = y′:

y′ =
2

y2 + c
⇒

∫
(y2 + c) dy = 2

∫
dt ⇒ 1

3
y3 + cy = 2t+ b.

Suppose our initial conditions are y(1) = 0 and y′(1) = 1. Then

1

2
· 03 + c · 0 = 2 · 1 + b ⇒ b = −2.

So the equation becomes
1

3
y3 + cy = −2 + 2t.

To use the second condition, take derivatives with respect to t:

y2 y′ + cy′ = 2.

Plug in y(1) = 0 and y′(1) = 1 to find c = 2. The solution, implicitly, is

1

3
y3 + 2y = −2 + 2t.
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Here is a picture of the slope field and our solution:

VII. Duh.

If your method of solving a differential equation is not working due to a troublesome
set of initial conditions, consider obvious/trivial solutions.

Example. We just solved the equation

y′′ + (y′)3y = 0.

for a particular set of initial conditions. If you look back at our method solution,
you’ll see that we can find a solution satisfying any initial conditions y(t0) = α
and y′(t0) = β, except for those where β = 0. That’s because we divided by v = y′

in the course of our solution. What do we do for the troublesome case of β = 0?
Applying the “duh” method, we immediately find the solution y = α, a constant
function.

Challenge. Solve
y′′ + (y′)3y = t.

with initial condition y(0) = 1 and y′(0) = 0.
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