
Math 322 lecture for Friday, Week 1

II. A. Exact equations.

An exact differential equation has the form

M(t, y) +N(t, y)
dy

dt
= 0.

where
∂M

∂y
=
∂N

∂t
.

We would like to find a solution that defines y implicitly, i.e., we are looking for a
function of the form

Φ(t, y) = 0.

If we had such a function, then by the chain rule,

0 =
dΦ

dt
=
∂Φ

∂t
+
∂Φ

∂y

dy

dt
.

Then Φ would be a solution if

M(t, y) =
∂Φ

∂t
and N(t, y) =

∂Φ

∂y
.

Note that the conditions on the partials of M and N which are required of an exact
equation would then follow necessarily:

∂M

∂y
=

∂2Φ

∂t ∂y
=
∂N

∂t
.

The trick then is to reverse-engineer this argument. Since M(t, y) =
∂Φ

∂t
, we inte-

grate M with respect to t:

Φ(t, y) =

∫
M(t, y) dt =: m(t, y) + f(y)

where f is an arbitrary function of y. Then we use the fact that N(t, y) =
∂Φ

∂y
to

determine f(y):

N(t, y) =
∂Φ

∂y
=

∂

∂y
(m(t, y) + f(y)).
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This determines f(y) up to a constant.

Note for those who have seen differential forms: Recall that the differential
form ω is exact if there is a form ψ such that dψ = ω. Since d2 = 0, such forms
are automatically closed: dω = d2ψ = 0. In our case, we are considering the 0-
form, ψ = Φ(t, y), and then

dψ =
∂Φ

∂t
dt+

∂Φ

∂y
dy. = M(t, y) dt+N(t, y) dy.

Another way of saying the same thing is that the vector field

(t, y) 7→ (M(t, y), N(t, y))

is the gradient vector field ∇Φ.

Example. Solve
sin(t+ y) + (2y + sin(t+ y))y′ = 0.

The equation is not separable. However, it is exact since

∂

∂y
sin(t+ y) = cos(t+ y) =

∂

∂t
(2y + sin(t+ y)).

We have M(t, y) = sin(t + y) and N(t, y) = 2y + sin(t + y). To solve the equation,
note that ∫

M(t, y) dt = − cos(t+ y) + f(y)

for some f(y), and then

∂

∂y
(− cos(t+ y) + f(y)) = N(t, y) = 2y + sin(t+ y)

implies that
df

dy
= 2y.

Hence, f(y) = y2 + c̃. Our final solution is

− cos(t+ y) + y2 = c.

Slope fields. Let y = y(t) be the solution to a differential equation y′ = F (y, t).
The graph of y(t) is a curve. At time t0, the curve passes through the point (t0, y(t0))
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Figure 1: Slope field and solutions for sin(t+ y) + (2y + sin(t+ y))y′ = 0.

and has slope y′(t0) = F (t0, y(t0)). Imagine attaching to each point (a, b) ∈ R2 a
tiny line segment with slope F (a, y(a)). Any solution curve will then be tangent to
each line segment it meets. (There will be lots of solutions, depending on the initial
condition.) For example, Figure 1 creates the slope field and exhibits several possible
solutions. Here is the Sage code used to produce the figure:

sage: v = plot_slope_field(-sin(t+y)/(2*y+sin(t+y)),(t,-5,5),(y,-3,3),

...: headaxislength=3, headlength=3,color=’blue’)

sage: c = contour_plot(-cos(t+y)+y^2,(t,-5,5),(y,-3,3),fill=false)

sage: v + c

Launched png viewer for Graphics object consisting of 2 graphics primitives

II. B. Exact after multiplying through by integrating factor.

We are again interested in solving

M(t, y) +N(t, y)
dy

dt
= 0,

but this time, we don’t assume that ∂M/∂y = ∂N/∂t. In that case, we look for a
function µ(t, y) such that

µ(t, y)M(t, y) + µ(t, y)N(t, y)
dy

dt
= 0,

is exact. In fact, µ always exists:

Proof. Let Φ be such that Φ(t, y) = 0 (we can talk about the existence of Φ later,
but for now let’s assume it exists). Differentiate with respect to t, as before, and use
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the chain rule

0 =
dΦ

dt
=
∂Φ

∂t
+
∂Φ

∂y

dy

dt
.

We have
dy

dt
= − ∂Φ/∂t

∂Φ/∂y
= −M(t, y)

N(t, y)
,

and, hence,
∂Φ/∂t

M(t, y)
=
∂Φ/∂y

N(t, y)
=: µ(t, y),

where we have just now defined µ. It follows that

0 = µ(t, y)M(t, y) + µ(t, y)N(t, y)
dy

dt
=
∂Φ

∂t
+
∂Φ

∂y

dy

dt
,

which is now exact. �

That’s the good news. The bad news is that it might not be easy to find µ. I typical
strategy is to assume that µ has a certain form involving parameters, and then try
to figure out what values for the parameters will make your equation exact.

Example. Solve

ty2 + 4t2y + (3t2y + 4t3)
dy

dt
= 0.

This equation is not exact. We’ll try to find an integrating factor of the form µ(t, y) =
tmyn. So we would like for

(tmyn)(ty2 + 4t2y) + tmyn(3t2y + 4t3)
dy

dt
= 0

to be exact. We need

∂

∂y
(tm+1yn+2 + 4tm+2yn+1) =

∂

∂t
(3tm+2yn+1 + 4tm+3yn).

In other words, we need

(n+ 2)tm+1yn+1 + 4(n+ 1)tm+2yn = 3(m+ 2)tm+1yn+1 + 4(m+ 3)tm+2yn.

Equate coefficients:

n+ 2 = 3(m+ 2) and 4(n+ 1) = 4(m+ 3).

Solving this system of linear equations yields m = −1 and n = 1. Our integrating
factor is µ(t, y) = y/t. Ah, ha! That reminds me of the homogeneity trick. In fact,
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solving for dy/dt in the original equation does give the form y′ = F (y/t)! So we could
have solved this with our earlier machinery. Nevertheless, we’ll continue from here.
Multiplying through by the integrating factor transforms our original equation into

y3 + 4ty2 + (3ty2 + 4t2y)
dy

dt
= 0,

which is now exact with

M = y3 + 4ty2 and N = 3ty2 + 4t2y.

(Check that ∂M/∂y = ∂N/∂t to be sure.) Solve the exact equation:

Φ(t, y) =

∫
M dt = ty3 + 2t2y2 + f(y)

implies

N(t, y) =
∂Φ

∂y
= 3ty2 + 4t2y +

df

dy
.

Comparing with N(t, y) shows that df/dy = 0. Hence, f(y) = c̃, a constant. Our
solution:

ty3 + 2t2y2 = c,

(where c = −c̃, is just another constant). Figure 2 give the slope field and several
solutions. Figure 3 plots the function z = ty3 + 2t2y2. The level sets of this function
are solutions to the differential equation.
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Figure 2: Slope field and solutions to ty2 + 4t2y + (3t2y + 4t3)dy
dt

= 0.

Figure 3: Plot of the surface z = ty3 + 2t2y2.
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