Math 322 Homework 6

Problem 1. Let $A \in M_{n}(F)$ and let $t \mapsto b(t) \in F^{n}$ be continuous. Let $x_{0} \in F^{n}$, and let u and v be solutions to the initial value problem

$$
\begin{equation*}
x^{\prime}(t)=A x(t)+b(t) \quad \text { and } \quad x(0)=x_{0} \tag{1}
\end{equation*}
$$

We have shown that for each initial condition $y_{0} \in F^{n}$, that the solution to $y^{\prime}(t)=$ $A y(t)$ with $y(0)=y_{0}$ is unique. Use this result to show that $u=v$ (i.e., the solution to system (1) is unique.)

Problem 2. We found that the solution to the forced harmonic oscillator problem

$$
x^{\prime \prime}=-x+f(t)
$$

has the solution

$$
x(t)=x(0) \cos (t)+x^{\prime}(0) \sin (t)+\int_{s=0}^{t} f(s) \sin (t-s) d s
$$

We also saw by integrating that in the case $f(t)=\cos (\omega t)$, the solution is

$$
x(0) \cos (t)+x^{\prime}(0) \sin (t)+\frac{\cos (\omega t)-\cos (t)}{1-\omega^{2}}
$$

While solving this equation, at some point we assumed $\omega \neq \pm 1$.
(a) Go back to our solution and revise it to get a solution in the case where $\omega=1$, and thus solve the forced harmonic oscillator problem with $f(t)=\cos (t)$. Use the identity

$$
\sin (\theta+\psi)+\sin (\theta-\psi)=2 \cos (\psi) \sin (\theta)
$$

and show your work.
(b) Graph the solution with initial condition $x(0)=x^{\prime}(0)=1$, enough to get a qualitative sense of the nature of the solution.

Problem 3. Consider the n-th order differential equation with constant coefficients

$$
y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=0
$$

The characteristic polynomial for the equation is $P(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$. Define the differential operator $D=\frac{d}{d t}$. Then our differential equation may be written

$$
P(D) y=0
$$

Suppose that P factors as $P(x)=\prod_{j=1}^{k}\left(x-\lambda_{j}\right)^{m_{j}}$ where the λ_{j} are distinct. We would like to show that the basic functions for our equation,

$$
\left\{t^{j} e^{\lambda_{i} t}: 0 \leq j \leq m_{i}-1,1 \leq i \leq k\right\}
$$

are solutions. So we need to show for each i that

$$
\begin{equation*}
P(D)\left(t^{\ell} e^{\lambda_{i} t}\right)=0 \tag{2}
\end{equation*}
$$

for $0 \leq \ell \leq m_{i}-1$. We do this in steps.
(a) Prove by induction that for every sufficiently differentiable function $f(t)$, we have

$$
(D-\lambda)^{k}\left(f(t) e^{\lambda t}\right)=e^{\lambda t} D^{k} f(t)
$$

for $k \geq 0$.
(b) Use the above result to prove that for each i, equation (2) holds for $0 \leq \ell \leq m_{i}-1$. You may use the fact that since D commutes with constants and with itself,

$$
(D-\lambda)(D-\mu)=(D-\mu)(D-\lambda)
$$

Problem 4. Let $f(t)$ be a real-valued integrable function on some open interval I containing 0 , and let $x_{0} \in \mathbb{R}$. Consider the initial value problem

$$
\begin{aligned}
x^{\prime}(t) & =f(x(t)) \\
x(0) & =x_{0} .
\end{aligned}
$$

By the fundamental theorem of calculus,

$$
x(t):=x_{0}+\int_{s=0}^{t} f(x(s)) d s
$$

is a solution. (You could check by computing $x^{\prime}(t)$ and $x(0)$.) Even if we cannot compute the integral directly, we can attempt to find a solution via the method of successive approximations. Define

$$
u_{0}(t):=x_{0}
$$

and for $k \geq 0$,

$$
u_{k+1}(t):=x_{0}+\int_{s=0}^{t} f\left(u_{k}(s)\right)
$$

Consider the case where $f(t)=\lambda t$ for some $\lambda \in \mathbb{R}$.
(a) Apply the method of successive approximations to find u_{1}, u_{2}, and u_{3}.
(b) Identify $\lim _{n \rightarrow \infty} u_{n}$. No proof is necessary.
(c) Solve the initial value problem exactly using methods we already know. (Your solution should agree with the limit you just calculated.)

