Math 322 Homework 4

Problem 1. (Product rule). Let $M_{m \times n}(F)$ denote the space of $m \times n$ matrices over $F=\mathbb{R}$ or \mathbb{C}. The derivative of a function

$$
\begin{aligned}
F & \rightarrow M_{m \times n}(F) \\
t & \mapsto A(t)
\end{aligned}
$$

with respect to t is defined entrywise:

$$
\left(A(t)^{\prime}\right)_{i j}=\left(A(t)_{i j}\right)^{\prime}
$$

Let $A(t)$ and $B(t)$ be two such functions into $M_{m \times p}(F)$ and $M_{p \times n}$, respectively. Use the ordinary product rule from one-variable calculus to prove the product rule

$$
(A(t) B(t))^{\prime}=A(t)^{\prime} B(t)+A(t) B(t)^{\prime} .
$$

(Use the definition of multiplication of matrices using summation notation. Do not write out matrices with ellipses.)

Problem 2. Consider the system

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+4 x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned}
$$

Find the solution to this system with initial condition $x(0)=(1,3)$ by diagonalizing a matrix and exponentiating by hand. Don't use a computer (except to check your work, if you'd like), and show your work.

Problem 3. Let $A \in M_{n}(F)$ and let $W \subseteq F^{n}$ be a subspace. Suppose W is invariant under A, i.e., $A w \in W$ for all $w \in W$. Let $x^{\prime}=A x$ have solution $x(t)$ with $x(0)=x_{0} \in W$. The goal of this problem is to show that $x(t)$ never leaves the subspace W. To prove this, fix t and define the sequence

$$
x_{n}=\left(\sum_{k=0}^{n} \frac{A^{k} t^{k}}{k!}\right) x_{0}
$$

for each $n \geq 0$. Since $A x_{0} \in W$, it easily follows that $x_{n} \in W$ for all n.
Now, the space W is complete, i.e., every Cauchy sequence in W converges to a point in $w \in W$. That's because W is linearly isomorphic to F^{m} where $m=\operatorname{dim} W$, which
is complete.) Therefore, if we can show that $\left(x_{n}\right)$ is a Cauchy sequence, the result will follow since

$$
x(t)=e^{A t} x_{0}=\lim _{n \rightarrow \infty} x_{n}=w \in W .
$$

Problem. Your job is to prove that the sequence $\left(x_{n}\right)$ is a Cauchy sequence. You may use the fact that $e^{A t}$ is Cauchy for each t (as shown in class). Give an $\varepsilon-N$ proof. Lemma 1, from the lecture on Monday Week 3 may be of use.

Problem 4. (D'Alembert reduction trick.) Suppose you have found a solution $a(t)$ to a differential equation of degree n

$$
q_{n}(t) y^{(n)}+q_{n-1}(t) y^{(n-1)}+\cdots+q_{1}(t) y^{\prime}+q_{0}(t) y=0 .
$$

Substitute $y(t)=u(t) a(t)$. Then, after cancellation, substitute $v=u^{\prime}$ to get an equation of the form

$$
a q_{n}(t) v^{(n-1)}+p_{n-2}(t) v^{(n-2)}+\cdots+p_{0}(t) v=0
$$

of degree $n-1$.
(a) Write out the details of this reduction procedure for the case $n=3$.
(b) Apply the reduction procedure to find the most general solution to

$$
t^{2} y^{\prime \prime}-3 t y^{\prime}+4 y=0
$$

given the solution $a(t)=t^{2}$. You may assume that the initial conditions are such that $t>0$ and the substituted quantities are positive.

