Math 322 Homework 3

Problem 1. Solve each of the following differential equations. Your solution should have the form $y=$ etc. In other words, I'm looking for an explicit solution. Don't leave answers with complex numbers, e.g., use sines and cosines rather than $e^{i t}$.

1. $y^{\prime \prime}-2 y^{\prime}+y=2 \cos (t)+4 e^{3 t}, \quad y(0)=y^{\prime}(0)=1$.
2. $t y^{\prime}+5 y-t^{5} y^{2}=0, \quad y(1)=1$.
3. $y^{\prime \prime}+2 y^{\prime}+3 y=5+3 t$.
4. $y^{\prime}=y t /\left(t^{2}+1\right), \quad y(0)=-3$.
5. $y^{\prime \prime}-6 y y^{\prime}=0, \quad y(0)=2, y^{\prime}(0)=9$.
6. $y^{\prime \prime}-6 y y^{\prime}=0, \quad y(0)=2, y^{\prime}(0)=0$.
7. $D^{2}(D+1)^{3}\left(D^{2}+2 D+2\right)^{2} y=0$.
8. $y^{(4)}-16 y=0$.
9. $y^{\prime \prime}=-2\left(y^{\prime}\right)^{2}, \quad y(0)=1=y^{\prime}(0)=1$.

Problem 2. Let $A \in M_{n}(F)$, and let r_{i} be the i-th row of A for $i=1 \ldots n$. Let $\ell=\max \left\{\left|r_{i}\right|: 1 \leq i \leq n\right\}$, the maximum length of a row of A. Prove $\|A\| \leq \ell \sqrt{n}$. (Strive to find an elegant solution that does not involve referencing the elements of A by name. You can do everything using just the notation introduced in the statement of the problem. Consider $|A x|^{2}$ for $|x| \leq 1$, and use Cauchy-Schwarz. On the other hand, an ugly solution is still a solution.)

