## Math 322

April 22, 2022

- Presentation date
- topic assignments


## Hamiltonian systems

$E \subseteq \mathbb{R}^{2 n}$ open,

## Hamiltonian systems

$E \subseteq \mathbb{R}^{2 n}$ open, $H: E \rightarrow \mathbb{R}$ in $C^{2}(E)$

## Hamiltonian systems

$E \subseteq \mathbb{R}^{2 n}$ open, $H: E \rightarrow \mathbb{R}$ in $C^{2}(E)$

$$
H\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=: H(x, y)
$$

## Hamiltonian systems

$E \subseteq \mathbb{R}^{2 n}$ open, $H: E \rightarrow \mathbb{R}$ in $C^{2}(E)$
$H\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=: H(x, y)$
Hamiltonian system with $n$ degrees of freedom:

$$
\begin{aligned}
& x^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)=H_{y}:=\frac{\partial H}{\partial y}=\left(\frac{\partial H}{\partial y_{1}}, \ldots, \frac{\partial H}{\partial y_{n}}\right) \\
& y^{\prime}=\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)=-H_{x}:=-\frac{\partial H}{\partial x}=-\left(\frac{\partial H}{\partial x_{1}}, \ldots, \frac{\partial H}{\partial x_{n}}\right) .
\end{aligned}
$$

## Hamiltonian systems

$E \subseteq \mathbb{R}^{2 n}$ open, $H: E \rightarrow \mathbb{R}$ in $C^{2}(E)$
$H\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=: H(x, y)$
Hamiltonian system with $n$ degrees of freedom:

$$
\begin{aligned}
x^{\prime} & =\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)=H_{y}:=\frac{\partial H}{\partial y}=\left(\frac{\partial H}{\partial y_{1}}, \ldots, \frac{\partial H}{\partial y_{n}}\right) \\
y^{\prime} & =\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)=-H_{x}:=-\frac{\partial H}{\partial x}=-\left(\frac{\partial H}{\partial x_{1}}, \ldots, \frac{\partial H}{\partial x_{n}}\right) .
\end{aligned}
$$

$H=$ Hamiltonian or total energy of the system.

## Conservation of energy

Theorem. (Conservation of energy.) For a Hamiltonian system, the total energy $H$ is constant along trajectories.

## Conservation of energy

Theorem. (Conservation of energy.) For a Hamiltonian system, the total energy $H$ is constant along trajectories.

Proof. Consider a solution trajectory $\gamma(t)=(x(t), y(t))$ in $\mathbb{R}^{2 n}$.

## Conservation of energy

Theorem. (Conservation of energy.) For a Hamiltonian system, the total energy $H$ is constant along trajectories.

Proof. Consider a solution trajectory $\gamma(t)=(x(t), y(t))$ in $\mathbb{R}^{2 n}$. By the chain rule,

$$
\frac{d}{d t} H(\gamma(t))=\nabla H \cdot \gamma^{\prime}
$$

## Conservation of energy

Theorem. (Conservation of energy.) For a Hamiltonian system, the total energy $H$ is constant along trajectories.

Proof. Consider a solution trajectory $\gamma(t)=(x(t), y(t))$ in $\mathbb{R}^{2 n}$. By the chain rule,

$$
\begin{aligned}
\frac{d}{d t} H(\gamma(t)) & =\nabla H \cdot \gamma^{\prime} \\
& =\frac{\partial H}{\partial x} \cdot x^{\prime}+\frac{\partial H}{\partial y} \cdot y^{\prime}
\end{aligned}
$$

## Conservation of energy

Theorem. (Conservation of energy.) For a Hamiltonian system, the total energy $H$ is constant along trajectories.

Proof. Consider a solution trajectory $\gamma(t)=(x(t), y(t))$ in $\mathbb{R}^{2 n}$. By the chain rule,

$$
\begin{aligned}
\frac{d}{d t} H(\gamma(t)) & =\nabla H \cdot \gamma^{\prime} \\
& =\frac{\partial H}{\partial x} \cdot x^{\prime}+\frac{\partial H}{\partial y} \cdot y^{\prime} \\
& =\frac{\partial H}{\partial x} \cdot \frac{\partial H}{\partial y}-\frac{\partial H}{\partial y} \cdot \frac{\partial H}{\partial x} \\
& =0
\end{aligned}
$$

## Conservation of energy

Theorem. (Conservation of energy.) For a Hamiltonian system, the total energy $H$ is constant along trajectories.

Proof. Consider a solution trajectory $\gamma(t)=(x(t), y(t))$ in $\mathbb{R}^{2 n}$. By the chain rule,

$$
\begin{aligned}
\frac{d}{d t} H(\gamma(t)) & =\nabla H \cdot \gamma^{\prime} \\
& =\frac{\partial H}{\partial x} \cdot x^{\prime}+\frac{\partial H}{\partial y} \cdot y^{\prime} \\
& =\frac{\partial H}{\partial x} \cdot \frac{\partial H}{\partial y}-\frac{\partial H}{\partial y} \cdot \frac{\partial H}{\partial x} \\
& =0
\end{aligned}
$$

Solutions lie on level sets for $H$.

## Example

Let $H(x, y)=y \sin (x)$ and consider the Hamiltonian with one degree of freedom:

$$
\begin{aligned}
& x^{\prime}=H_{y}=\sin (x) \\
& y^{\prime}=-H_{x}=-y \cos (x) .
\end{aligned}
$$

## Critical points of a Hamiltonian system

$$
\begin{aligned}
& x^{\prime}=\frac{\partial H}{\partial y}=\left(\frac{\partial H}{\partial y_{1}}, \ldots, \frac{\partial H}{\partial y_{n}}\right) \\
& y^{\prime}=-\frac{\partial H}{\partial x}=-\left(\frac{\partial H}{\partial x_{1}}, \ldots, \frac{\partial H}{\partial x_{n}}\right)
\end{aligned}
$$

The critical points of a Hamiltonian system occur at the critical points of the Hamiltonian, i.e., where $\nabla H=0$.

## Critical points of a Hamiltonian system

$$
\begin{aligned}
& x^{\prime}=\frac{\partial H}{\partial y}=\left(\frac{\partial H}{\partial y_{1}}, \ldots, \frac{\partial H}{\partial y_{n}}\right) \\
& y^{\prime}=-\frac{\partial H}{\partial x}=-\left(\frac{\partial H}{\partial x_{1}}, \ldots, \frac{\partial H}{\partial x_{n}}\right)
\end{aligned}
$$

The critical points of a Hamiltonian system occur at the critical points of the Hamiltonian, i.e., where $\nabla H=0$.

These occur where the graph of $H$

$$
\operatorname{graph}(H):=\left\{(x, y, H(x, y)) \subset \mathbb{R}^{2 n+1}:(x, y) \in E\right\},
$$

has a horizontal tangent space.

## Critical points of a Hamiltonian system

At a critical point $p$, the geometry of $H$ is determined by its second partials.

## Critical points of a Hamiltonian system

At a critical point $p$, the geometry of $H$ is determined by its second partials. (Why?

## Critical points of a Hamiltonian system

At a critical point $p$, the geometry of $H$ is determined by its second partials. (Why? Consider the Taylor series.)

## Critical points of a Hamiltonian system

At a critical point $p$, the geometry of $H$ is determined by its second partials. (Why? Consider the Taylor series.)

WLOG, suppose $p=0$ is a critical point.

## Critical points of a Hamiltonian system

At a critical point $p$, the geometry of $H$ is determined by its second partials. (Why? Consider the Taylor series.)

WLOG, suppose $p=0$ is a critical point. The second-order Taylor polynomial is

$$
H(0)+\underbrace{\frac{1}{2} \frac{\partial^{2} H}{\partial x_{1}^{2}}(0) x_{1}^{2}+\frac{\partial^{2} H}{\partial x_{1} \partial x_{2}}(0) x_{1} x_{2}+\cdots+\frac{1}{2} \frac{\partial^{2} H}{\partial y_{n}^{2}}(0) y_{n}^{2}}_{Q(x, y)} .
$$

## Critical points of a Hamiltonian system

At a critical point $p$, the geometry of $H$ is determined by its second partials. (Why? Consider the Taylor series.)

WLOG, suppose $p=0$ is a critical point. The second-order Taylor polynomial is

$$
H(0)+\underbrace{\frac{1}{2} \frac{\partial^{2} H}{\partial x_{1}^{2}}(0) x_{1}^{2}+\frac{\partial^{2} H}{\partial x_{1} \partial x_{2}}(0) x_{1} x_{2}+\cdots+\frac{1}{2} \frac{\partial^{2} H}{\partial y_{n}^{2}}(0) y_{n}^{2}}_{Q(x, y)} .
$$

Linear algebra (spectral theorem): after a linear change of coordinates, $Q$ has the form

$$
\widetilde{Q}=v_{1}^{2}+\cdots+v_{k}^{2}-v_{k+1}^{2}-\cdots-v_{r}^{2}
$$

## Example, continued

$$
\begin{aligned}
x^{\prime} & =H_{y}=\sin (x) \\
y^{\prime} & =-H_{x}=-y \cos (x)
\end{aligned}
$$

## Lemma

Corollary. Let $p \in \mathbb{R}^{2 n}$. Suppose there is a solution $\gamma(t)=(x(t), y(t))$ such that $\gamma(0) \neq p$ but such that $\gamma(t) \rightarrow p \in \mathbb{R}^{2 n}$ as either $t \rightarrow \infty$ or $t \rightarrow-\infty$.

## Lemma

Corollary. Let $p \in \mathbb{R}^{2 n}$. Suppose there is a solution $\gamma(t)=(x(t), y(t))$ such that $\gamma(0) \neq p$ but such that $\gamma(t) \rightarrow p \in \mathbb{R}^{2 n}$ as either $t \rightarrow \infty$ or $t \rightarrow-\infty$.

Then $p$ is not a strict minimum or maximum of $H$.

## Hamiltonian systems with one degree of freedom

Theorem. Consider a Hamiltonian system with one degree of freedom and total energy function $H(x, y)$.

## Hamiltonian systems with one degree of freedom

Theorem. Consider a Hamiltonian system with one degree of freedom and total energy function $H(x, y)$. Suppose that $H$ is analytic.

## Hamiltonian systems with one degree of freedom

Theorem. Consider a Hamiltonian system with one degree of freedom and total energy function $H(x, y)$. Suppose that $H$ is analytic. Then its nondegenerate critical points are either topological saddles are centers.

## Hamiltonian systems with one degree of freedom

Theorem. Consider a Hamiltonian system with one degree of freedom and total energy function $H(x, y)$. Suppose that $H$ is analytic. Then its nondegenerate critical points are either topological saddles are centers.

Proof. Linearized system:

$$
\binom{x^{\prime}}{y^{\prime}}=\underbrace{\left(\begin{array}{rr}
H_{y x} & H_{y y} \\
-H_{x x} & -H_{x y}
\end{array}\right)}_{A}\binom{x}{y} .
$$

## Hamiltonian systems with one degree of freedom

Proof. Linearized system:

$$
\binom{x^{\prime}}{y^{\prime}}=\underbrace{\left(\begin{array}{rr}
H_{y x} & H_{y y} \\
-H_{x x} & -H_{x y}
\end{array}\right)}_{A}\binom{x}{y} .
$$


saddle

Newtonian system with one degree of freedom

$$
x^{\prime \prime}=f(x)
$$

Newtonian system with one degree of freedom

$$
x^{\prime \prime}=f(x)
$$

Equivalently,

$$
\begin{aligned}
& x^{\prime}=y \\
& y^{\prime}=f(x) .
\end{aligned}
$$

Newtonian system with one degree of freedom

$$
x^{\prime \prime}=f(x)
$$

Equivalently,

$$
\begin{aligned}
x^{\prime} & =y \\
y^{\prime} & =f(x)
\end{aligned}
$$

Hamiltonian with $H_{y}=y$ and $H_{x}=-f(x)$.

## Newtonian system with one degree of freedom

$$
x^{\prime \prime}=f(x)
$$

Equivalently,

$$
\begin{aligned}
x^{\prime} & =y \\
y^{\prime} & =f(x)
\end{aligned}
$$

Hamiltonian with $H_{y}=y$ and $H_{x}=-f(x)$. It follows that

$$
H(x, y)=T(y)+U(x)
$$

where $T(y)=\frac{1}{2} y^{2}$ (kinetic energy) and $U(x)=-\int_{x_{0}}^{x} f(s) d s$ (potential energy).

## Newtonian system with one degree of freedom

Theorem. The critical points of this Newtonian system lie on the $x$-axis. The point $\left(x_{0}, 0\right)$ is a critical point iff $x_{0}$ is a critical point of the function $U(x)$, i.e., iff $U^{\prime}\left(x_{0}\right)=0$. Suppose that $H$ is analytic. Then,

1. If $x_{0}$ is a strict local maximum for $U$, then $\left(x_{0}, 0\right)$ is a saddle for the system.
2. If $x_{0}$ is a strict local minimum for $U$, then $\left(x_{0}, 0\right)$ is a center for the system.
3. If $x_{0}$ is a horizontal inflection point for $U$ (which means its first nonzero derivative at $x_{0}$ is of an odd order), then ( $x_{0}, 0$ ) is a cusp (i.e., two hyperbolic sectors and two separatrices).

## Undamped pendulum

$$
x^{\prime \prime}=-\sin (x)
$$

## Undamped pendulum

$$
\begin{aligned}
& x^{\prime \prime}=-\sin (x) \\
& x^{\prime}=y \\
& y^{\prime}=-\sin (x)
\end{aligned}
$$

## Undamped pendulum

$$
x^{\prime \prime}=-\sin (x)
$$

$$
\begin{aligned}
& x^{\prime}=y \\
& y^{\prime}=-\sin (x)
\end{aligned}
$$

$x=$ position; $y=$ velocity

## Undamped pendulum

$$
x^{\prime \prime}=-\sin (x)
$$

$$
\begin{aligned}
& x^{\prime}=y \\
& y^{\prime}=-\sin (x)
\end{aligned}
$$

$x=$ position; $y=$ velocity
Kinetic energy $=\frac{1}{2} y^{2}$

## Undamped pendulum

$$
x^{\prime \prime}=-\sin (x)
$$

$$
\begin{aligned}
& x^{\prime}=y \\
& y^{\prime}=-\sin (x)
\end{aligned}
$$

$x=$ position; $y=$ velocity
Kinetic energy $=\frac{1}{2} y^{2}$
Potential energy: $U(x)=\int_{0}^{x} \sin (s) d s=1-\cos (x)$

