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Hamiltonian systems

E ⊆ R2n open,

H : E → R in C2(E )

H(x1, . . . , xn, y1, . . . , yn) =: H(x , y)

Hamiltonian system with n degrees of freedom:

x ′ = (x ′
1, . . . , x ′

n) = Hy := ∂H
∂y =

(
∂H
∂y1

, . . . ,
∂H
∂yn

)

y ′ = (y ′
1, . . . , y ′

n) = −Hx := −∂H
∂x = −

(
∂H
∂x1

, . . . ,
∂H
∂xn

)
.

H = Hamiltonian or total energy of the system.
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Conservation of energy

Theorem. (Conservation of energy.) For a Hamiltonian system,
the total energy H is constant along trajectories.

Proof. Consider a solution trajectory γ(t) = (x(t), y(t)) in R2n.
By the chain rule,

d
dt H(γ(t)) = ∇H · γ′

= ∂H
∂x · x

′ + ∂H
∂y · y

′

= ∂H
∂x ·

∂H
∂y −

∂H
∂y ·

∂H
∂x

= 0. �

Solutions lie on level sets for H.
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Example

Let H(x , y) = y sin(x) and consider the Hamiltonian with one
degree of freedom:

x ′ = Hy = sin(x)
y ′ = −Hx = −y cos(x).



Critical points of a Hamiltonian system

x ′ = ∂H
∂y =

(
∂H
∂y1

, . . . ,
∂H
∂yn

)

y ′ = −∂H
∂x = −

(
∂H
∂x1

, . . . ,
∂H
∂xn

)
The critical points of a Hamiltonian system occur at the critical
points of the Hamiltonian, i.e., where ∇H = 0.

These occur where the graph of H

graph(H) :=
{

(x , y ,H(x , y)) ⊂ R2n+1 : (x , y) ∈ E
}
,

has a horizontal tangent space.
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Critical points of a Hamiltonian system

At a critical point p, the geometry of H is determined by its
second partials.

(Why? Consider the Taylor series.)

WLOG, suppose p = 0 is a critical point. The second-order Taylor
polynomial is

H(0) + 1
2
∂2H
∂x2

1
(0)x2

1 + ∂2H
∂x1∂x2

(0)x1x2 + · · ·+ 1
2
∂2H
∂y2

n
(0)y2

n︸ ︷︷ ︸
Q(x ,y)

.

Linear algebra (spectral theorem): after a linear change of
coordinates, Q has the form

Q̃ = v2
1 + · · ·+ v2

k − v2
k+1 − · · · − v2

r
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Example, continued

x ′ = Hy = sin(x)
y ′ = −Hx = −y cos(x)



Lemma

Corollary. Let p ∈ R2n. Suppose there is a solution
γ(t) = (x(t), y(t)) such that γ(0) 6= p but such that
γ(t)→ p ∈ R2n as either t →∞ or t → −∞.

Then p is not a strict minimum or maximum of H.
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Hamiltonian systems with one degree of freedom

Theorem. Consider a Hamiltonian system with one degree of
freedom and total energy function H(x , y).

Suppose that H is
analytic. Then its nondegenerate critical points are either
topological saddles are centers.

Proof. Linearized system:(
x ′

y ′

)
=
(

Hyx Hyy
−Hxx −Hxy

)
︸ ︷︷ ︸

A

(
x
y

)
.
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Hamiltonian systems with one degree of freedom
Proof. Linearized system:(
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Newtonian system with one degree of freedom

x ′′ = f (x)

Equivalently,

x ′ = y
y ′ = f (x).

Hamiltonian with Hy = y and Hx = −f (x). It follows that

H(x , y) = T (y) + U(x)

where T (y) = 1
2y2 (kinetic energy) and U(x) = −

∫ x
x0

f (s) ds
(potential energy).
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Newtonian system with one degree of freedom

Theorem. The critical points of this Newtonian system lie on
the x -axis. The point (x0, 0) is a critical point iff x0 is a critical
point of the function U(x), i.e., iff U ′(x0) = 0. Suppose that H is
analytic. Then,

1. If x0 is a strict local maximum for U, then (x0, 0) is a saddle
for the system.

2. If x0 is a strict local minimum for U, then (x0, 0) is a center
for the system.

3. If x0 is a horizontal inflection point for U (which means its
first nonzero derivative at x0 is of an odd order), then (x0, 0)
is a cusp (i.e., two hyperbolic sectors and two separatrices).



Undamped pendulum

x ′′ = − sin(x)

x ′ = y
y ′ = − sin(x)

x = position; y = velocity

Kinetic energy = 1
2y2

Potential energy: U(x) =
∫ x

0 sin(s) ds = 1− cos(x)
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