


Jordan curve

A Jordan curve is the continuous injective image C of a circle:



Jordan curve

A Jordan curve is the continuous injective image C of a circle:

v: St 5 R?



Jordan curve

A Jordan curve is the continuous injective image C of a circle:
y: St — R2
or
~v:[0,1] — R?
injective on [0, 1), and v(0) = (1)



Jordan curve

A Jordan curve is the continuous injective image C of a circle:
y: St — R2

or
~v:[0,1] — R?

injective on [0, 1), and v(0) = (1)

We will also require that « is piece-wise smooth.
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Let f(x,y) = (P(x,y), Q(x,y)) be a smooth vector field in the
plane, and let C be a Jordan curve.

A critical point for f is a point (xo, yo) where f(xo, o) = 0. (Thus,
a critical point would be an equilibrium point for the corresponding
system of differential equations.)

Definition. The index I¢(C) of C relative to f is

I (C) = =

T om

where Af is the change in angle of f(x,y) as (x,y) travels
around C counterclockwise.
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Examples

Compute the index of the unit circle centered at the origin for each
of the following fields

(@) flxy)=(-1,-1) (b) f(x,y)=(=x,-y)
() flxy)=(=y,x) (d) flxy)=(=xy).

How do the indices change in (a)—(d) if f is replaced by —f7

How would the index change if C were replaced by an ellipse?
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Write v(t) = (x(t), y(t)), and use polar coordinates:

f((t)) = (P(x(t), y(t)), Q(x(t), ¥(t)))
= (r(t) cos(0(t)), r(t)sin(6(t))).

Then

P" = r'cos(6) — rsin(0)
Q' = r'sin(0) + rcos(6)

20/ — PQI _ QP/
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1 2w
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Awesomeness

Theorem. If there are no critical points on C or in its interior,
then /¢(C) = 0.

Corollary. Let C be a Jordan curve. Suppose there are no critical
points on C but that there may be critical points in its interior.
Let C’ a Jordan curve in the interior of C, and suppose there are
no critical points on C’, and there are no critical points in the
region between C and C’. Then I¢(C) = I¢(C").

Corollary. If C and C’ are Jordan curves containing the same
finite set of critical points in their interiors, then If(C) = I¢(C’).
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Awesomeness

Definition. Let p be an isolated critical point of f. Define the
index of x relative to f to be

le(p) := 1¢(C)

where C is any Jordan curve containing p as its only interior
critical point. (This is well-defined from the previous corollary.)

Theorem. Let p1,..., p, be the critical points inside C. Then

W)=Y e



