Math 322

April 6, 2022

A *Jordan curve* is the continuous injective image *C* of a circle:

A *Jordan curve* is the continuous injective image *C* of a circle:

$$\gamma \colon S^1 \to \mathbb{R}^2$$

A *Jordan curve* is the continuous injective image *C* of a circle:

$$\gamma \colon S^1 \to \mathbb{R}^2$$

or

$$\gamma \colon [0,1] \to \mathbb{R}^2$$

injective on [0,1), and $\gamma(0) = \gamma(1)$

A *Jordan curve* is the continuous injective image *C* of a circle:

$$\gamma \colon \mathcal{S}^1 \to \mathbb{R}^2$$

or

$$\gamma \colon [0,1] \to \mathbb{R}^2$$

injective on [0,1), and $\gamma(0) = \gamma(1)$

We will also require that γ is *piece-wise* smooth.

Let f(x,y) = (P(x,y), Q(x,y)) be a smooth vector field in the plane,

Let f(x, y) = (P(x, y), Q(x, y)) be a smooth vector field in the plane, and let C be a Jordan curve.

Let f(x, y) = (P(x, y), Q(x, y)) be a smooth vector field in the plane, and let C be a Jordan curve.

A critical point for f is a point (x_0, y_0) where $f(x_0, y_0) = 0$.

Let f(x, y) = (P(x, y), Q(x, y)) be a smooth vector field in the plane, and let C be a Jordan curve.

A critical point for f is a point (x_0, y_0) where $f(x_0, y_0) = 0$. (Thus, a critical point would be an equilibrium point for the corresponding system of differential equations.)

Let f(x, y) = (P(x, y), Q(x, y)) be a smooth vector field in the plane, and let C be a Jordan curve.

A critical point for f is a point (x_0, y_0) where $f(x_0, y_0) = 0$. (Thus, a critical point would be an equilibrium point for the corresponding system of differential equations.)

Definition. The index $I_f(C)$ of C relative to f is

$$I_f(C) := \frac{\Delta \theta}{2\pi}$$

where $\Delta\theta$ is the change in angle of f(x, y) as (x, y) travels around C counterclockwise.

(a)
$$f(x,y) = (-1,-1)$$

(a)
$$f(x,y) = (-1,-1)$$
 (b) $f(x,y) = (-x,-y)$

(a)
$$f(x,y) = (-1,-1)$$
 (b) $f(x,y) = (-x,-y)$
(c) $f(x,y) = (-y,x)$

(a)
$$f(x,y) = (-1,-1)$$
 (b) $f(x,y) = (-x,-y)$

(c)
$$f(x,y) = (-y,x)$$
 (d) $f(x,y) = (-x,y)$.

Compute the index of the unit circle centered at the origin for each of the following fields

(a)
$$f(x,y) = (-1,-1)$$
 (b) $f(x,y) = (-x,-y)$

(c)
$$f(x,y) = (-y,x)$$
 (d) $f(x,y) = (-x,y)$.

How do the indices change in (a)–(d) if f is replaced by -f?

Compute the index of the unit circle centered at the origin for each of the following fields

(a)
$$f(x,y) = (-1,-1)$$
 (b) $f(x,y) = (-x,-y)$

(c)
$$f(x,y) = (-y,x)$$
 (d) $f(x,y) = (-x,y)$.

How do the indices change in (a)–(d) if f is replaced by -f?

How would the index change if C were replaced by an ellipse?

Parametrize C with γ , and let f = (P, Q):

Parametrize C with γ , and let f = (P, Q):

$$f \circ \gamma \colon [0,1] \xrightarrow{\gamma} \mathbb{R}^2 \xrightarrow{f} \mathbb{R}^2$$

Parametrize C with γ , and let f = (P, Q):

$$f \circ \gamma \colon [0,1] \xrightarrow{\gamma} \mathbb{R}^2 \xrightarrow{f} \mathbb{R}^2$$

Write $\gamma(t) = (x(t), y(t))$, and use polar coordinates:

$$f(\gamma(t)) = (P(x(t), y(t)), Q(x(t), y(t)))$$

= $(r(t)\cos(\theta(t)), r(t)\sin(\theta(t))).$

Parametrize C with γ , and let f = (P, Q):

$$f \circ \gamma \colon [0,1] \xrightarrow{\gamma} \mathbb{R}^2 \xrightarrow{f} \mathbb{R}^2$$

Write $\gamma(t) = (x(t), y(t))$, and use polar coordinates:

$$f(\gamma(t)) = (P(x(t), y(t)), Q(x(t), y(t)))$$

= $(r(t)\cos(\theta(t)), r(t)\sin(\theta(t))).$

Then

$$P' = r' \cos(\theta) - r \sin(\theta)$$
$$Q' = r' \sin(\theta) + r \cos(\theta)$$

Parametrize C with γ , and let f = (P, Q):

$$f \circ \gamma \colon [0,1] \xrightarrow{\gamma} \mathbb{R}^2 \xrightarrow{f} \mathbb{R}^2$$

Write $\gamma(t) = (x(t), y(t))$, and use polar coordinates:

$$f(\gamma(t)) = (P(x(t), y(t)), Q(x(t), y(t)))$$

= $(r(t)\cos(\theta(t)), r(t)\sin(\theta(t))).$

Then

$$P' = r'\cos(\theta) - r\sin(\theta)$$

$$Q' = r'\sin(\theta) + r\cos(\theta)$$

$$\Rightarrow$$

$$r^2\theta' = PQ' - QP'.$$

$$r^2\theta' = PQ' - QP', \quad r^2 = P^2 + Q^2$$

$$r^2\theta' = PQ' - QP', \quad r^2 = P^2 + Q^2$$

$$\Delta \theta = \int_{t=0}^{1} \theta' \, dt = \int_{t=0}^{1} \frac{PQ' - QP'}{P^2 + Q^2} \, dt$$

$$r^2\theta' = PQ' - QP', \quad r^2 = P^2 + Q^2$$

$$\begin{split} \Delta\theta &= \int_{t=0}^{1} \theta' \, dt = \int_{t=0}^{1} \frac{PQ' - QP'}{P^2 + Q^2} \, dt \\ &= \int_{t=0}^{1} (P, Q) \cdot \left(\frac{Q'}{P^2 + Q^2}, -\frac{P'}{P^2 + Q^2} \right) \, dt \end{split}$$

$$r^{2}\theta' = PQ' - QP', \quad r^{2} = P^{2} + Q^{2}$$

$$\Delta\theta = \int_{t=0}^{1} \theta' dt = \int_{t=0}^{1} \frac{PQ' - QP'}{P^{2} + Q^{2}} dt$$

$$= \int_{t=0}^{1} (P, Q) \cdot \left(\frac{Q'}{P^{2} + Q^{2}}, -\frac{P'}{P^{2} + Q^{2}}\right) dt$$

$$= \oint_{C} \frac{P dQ - Q dP}{P^{2} + Q^{2}}$$

$$r^{2}\theta' = PQ' - QP', \quad r^{2} = P^{2} + Q^{2}$$

$$\Delta\theta = \int_{t=0}^{1} \theta' dt = \int_{t=0}^{1} \frac{PQ' - QP'}{P^{2} + Q^{2}} dt$$

$$= \int_{t=0}^{1} (P, Q) \cdot \left(\frac{Q'}{P^{2} + Q^{2}}, -\frac{P'}{P^{2} + Q^{2}}\right) dt$$

$$= \oint_{C} \frac{P dQ - Q dP}{P^{2} + Q^{2}}$$

$$\longrightarrow I_{f}(C) = \frac{\Delta\theta}{2\pi} = \frac{1}{2\pi} \oint_{C} \frac{P dQ - Q dP}{P^{2} + Q^{2}} \longleftarrow$$

Let
$$f(x, y) = (-y, x)$$
,

Let f(x,y)=(-y,x), and let C be the unit circle centered at the origin parametrized by $\gamma(t)=(\cos(t),\sin(t))$ for $t\in[0,2\pi]$.

$$I_f(C) = \frac{1}{2\pi} \int_{t=0}^{1} (P, Q) \cdot \left(\frac{Q'}{P^2 + Q^2}, -\frac{P'}{P^2 + Q^2} \right) dt$$

$$\begin{split} I_f(C) &= \frac{1}{2\pi} \int_{t=0}^1 (P,Q) \cdot \left(\frac{Q'}{P^2 + Q^2}, -\frac{P'}{P^2 + Q^2} \right) \, dt \\ &= \frac{1}{2\pi} \int_{t=0}^{2\pi} (-\sin(t), \cos(t)) \cdot \left(\frac{-\sin(t)}{1}, \frac{\cos(t)}{1} \right) \, dt \end{split}$$

$$\begin{split} I_f(C) &= \frac{1}{2\pi} \int_{t=0}^1 (P,Q) \cdot \left(\frac{Q'}{P^2 + Q^2}, -\frac{P'}{P^2 + Q^2} \right) \, dt \\ &= \frac{1}{2\pi} \int_{t=0}^{2\pi} (-\sin(t), \cos(t)) \cdot \left(\frac{-\sin(t)}{1}, \frac{\cos(t)}{1} \right) \, dt \end{split}$$

$$\begin{split} I_f(C) &= \frac{1}{2\pi} \int_{t=0}^1 (P,Q) \cdot \left(\frac{Q'}{P^2 + Q^2}, -\frac{P'}{P^2 + Q^2} \right) \, dt \\ &= \frac{1}{2\pi} \int_{t=0}^{2\pi} (-\sin(t), \cos(t)) \cdot \left(\frac{-\sin(t)}{1}, \frac{\cos(t)}{1} \right) \, dt \\ &= \frac{1}{2\pi} \int_{t=0}^{2\pi} \, dt = 1. \end{split}$$

Theorem. If there are no critical points on C or in its interior, then $I_f(C) = 0$.

Theorem. If there are no critical points on C or in its interior, then $I_f(C) = 0$.

Corollary. Let C be a Jordan curve. Suppose there are no critical points on C but that there may be critical points in its interior.

Theorem. If there are no critical points on C or in its interior, then $I_f(C) = 0$.

Corollary. Let C be a Jordan curve. Suppose there are no critical points on C but that there may be critical points in its interior. Let C' a Jordan curve in the interior of C, and suppose there are no critical points on C', and there are no critical points in the region between C and C'.

Theorem. If there are no critical points on C or in its interior, then $I_f(C) = 0$.

Corollary. Let C be a Jordan curve. Suppose there are no critical points on C but that there may be critical points in its interior. Let C' a Jordan curve in the interior of C, and suppose there are no critical points on C', and there are no critical points in the region between C and C'. Then $I_f(C) = I_f(C')$.

Theorem. If there are no critical points on C or in its interior, then $I_f(C) = 0$.

Corollary. Let C be a Jordan curve. Suppose there are no critical points on C but that there may be critical points in its interior. Let C' a Jordan curve in the interior of C, and suppose there are no critical points on C', and there are no critical points in the region between C and C'. Then $I_f(C) = I_f(C')$.

Corollary. If C and C' are Jordan curves containing the same finite set of critical points in their interiors, then $I_f(C) = I_f(C')$.

Definition. Let p be an isolated critical point of f. Define the index of x relative to f to be

$$I_f(p) := I_f(C)$$

where C is any Jordan curve containing p as its only interior critical point. (This is well-defined from the previous corollary.)

Definition. Let p be an isolated critical point of f. Define the index of x relative to f to be

$$I_f(p) := I_f(C)$$

where C is any Jordan curve containing p as its only interior critical point. (This is well-defined from the previous corollary.)

Theorem. Let p_1, \ldots, p_n be the critical points inside C. Then

$$I_f(C) = \sum_{i=1}^n I_f(p_i).$$