Math 322

April 6, 2022

Jordan curve

A Jordan curve is the continuous injective image C of a circle:

Jordan curve

A Jordan curve is the continuous injective image C of a circle:

$$
\gamma: S^{1} \rightarrow \mathbb{R}^{2}
$$

Jordan curve

A Jordan curve is the continuous injective image C of a circle:

$$
\gamma: S^{1} \rightarrow \mathbb{R}^{2}
$$

or

$$
\gamma:[0,1] \rightarrow \mathbb{R}^{2}
$$

injective on $[0,1)$, and $\gamma(0)=\gamma(1)$

Jordan curve

A Jordan curve is the continuous injective image C of a circle:

$$
\gamma: S^{1} \rightarrow \mathbb{R}^{2}
$$

or

$$
\gamma:[0,1] \rightarrow \mathbb{R}^{2}
$$

injective on $[0,1)$, and $\gamma(0)=\gamma(1)$
We will also require that γ is piece-wise smooth.

Index of a critical point

Let $f(x, y)=(P(x, y), Q(x, y))$ be a smooth vector field in the plane,

Index of a critical point

Let $f(x, y)=(P(x, y), Q(x, y))$ be a smooth vector field in the plane, and let C be a Jordan curve.

Index of a critical point

Let $f(x, y)=(P(x, y), Q(x, y))$ be a smooth vector field in the plane, and let C be a Jordan curve.

A critical point for f is a point $\left(x_{0}, y_{0}\right)$ where $f\left(x_{0}, y_{0}\right)=0$.

Index of a critical point

Let $f(x, y)=(P(x, y), Q(x, y))$ be a smooth vector field in the plane, and let C be a Jordan curve.

A critical point for f is a point $\left(x_{0}, y_{0}\right)$ where $f\left(x_{0}, y_{0}\right)=0$. (Thus, a critical point would be an equilibrium point for the corresponding system of differential equations.)

Index of a critical point

Let $f(x, y)=(P(x, y), Q(x, y))$ be a smooth vector field in the plane, and let C be a Jordan curve.

A critical point for f is a point $\left(x_{0}, y_{0}\right)$ where $f\left(x_{0}, y_{0}\right)=0$. (Thus, a critical point would be an equilibrium point for the corresponding system of differential equations.)

Definition. The index $I_{f}(C)$ of C relative to f is

$$
I_{f}(C):=\frac{\Delta \theta}{2 \pi}
$$

where $\Delta \theta$ is the change in angle of $f(x, y)$ as (x, y) travels around C counterclockwise.

Examples

Compute the index of the unit circle centered at the origin for each of the following fields
(a) $f(x, y)=(-1,-1)$

Examples

Compute the index of the unit circle centered at the origin for each of the following fields
(a) $f(x, y)=(-1,-1)$
(b) $f(x, y)=(-x,-y)$

Examples

Compute the index of the unit circle centered at the origin for each of the following fields
(a) $f(x, y)=(-1,-1)$
(b) $f(x, y)=(-x,-y)$
(c) $f(x, y)=(-y, x)$

Examples

Compute the index of the unit circle centered at the origin for each of the following fields
(a) $f(x, y)=(-1,-1)$
(b) $f(x, y)=(-x,-y)$
(c) $f(x, y)=(-y, x)$
(d) $f(x, y)=(-x, y)$.

Examples

Compute the index of the unit circle centered at the origin for each of the following fields
(a) $f(x, y)=(-1,-1)$
(b) $f(x, y)=(-x,-y)$
(c) $f(x, y)=(-y, x)$
(d) $f(x, y)=(-x, y)$.

How do the indices change in (a)-(d) if f is replaced by $-f$?

Examples

Compute the index of the unit circle centered at the origin for each of the following fields
(a) $f(x, y)=(-1,-1)$
(b) $f(x, y)=(-x,-y)$
(c) $f(x, y)=(-y, x)$
(d) $f(x, y)=(-x, y)$.

How do the indices change in (a)-(d) if f is replaced by $-f$?
How would the index change if C were replaced by an ellipse?

Computing the index

Parametrize C with γ, and let $f=(P, Q)$:

Computing the index

Parametrize C with γ, and let $f=(P, Q)$:

$$
f \circ \gamma:[0,1] \xrightarrow{\gamma} \mathbb{R}^{2} \xrightarrow{f} \mathbb{R}^{2}
$$

Computing the index

Parametrize C with γ, and let $f=(P, Q)$:

$$
f \circ \gamma:[0,1] \xrightarrow{\gamma} \mathbb{R}^{2} \xrightarrow{f} \mathbb{R}^{2}
$$

Write $\gamma(t)=(x(t), y(t))$, and use polar coordinates:

$$
\begin{aligned}
f(\gamma(t)) & =(P(x(t), y(t)), Q(x(t), y(t))) \\
& =(r(t) \cos (\theta(t)), r(t) \sin (\theta(t))) .
\end{aligned}
$$

Computing the index

Parametrize C with γ, and let $f=(P, Q)$:

$$
f \circ \gamma:[0,1] \xrightarrow{\gamma} \mathbb{R}^{2} \xrightarrow{f} \mathbb{R}^{2}
$$

Write $\gamma(t)=(x(t), y(t))$, and use polar coordinates:

$$
\begin{aligned}
f(\gamma(t)) & =(P(x(t), y(t)), Q(x(t), y(t))) \\
& =(r(t) \cos (\theta(t)), r(t) \sin (\theta(t)))
\end{aligned}
$$

Then

$$
\begin{aligned}
& P^{\prime}=r^{\prime} \cos (\theta)-r \sin (\theta) \\
& Q^{\prime}=r^{\prime} \sin (\theta)+r \cos (\theta)
\end{aligned}
$$

Computing the index

Parametrize C with γ, and let $f=(P, Q)$:

$$
f \circ \gamma:[0,1] \xrightarrow{\gamma} \mathbb{R}^{2} \xrightarrow{f} \mathbb{R}^{2}
$$

Write $\gamma(t)=(x(t), y(t))$, and use polar coordinates:

$$
\begin{aligned}
f(\gamma(t)) & =(P(x(t), y(t)), Q(x(t), y(t))) \\
& =(r(t) \cos (\theta(t)), r(t) \sin (\theta(t)))
\end{aligned}
$$

Then

$$
\begin{aligned}
& P^{\prime}=r^{\prime} \cos (\theta)-r \sin (\theta) \\
& Q^{\prime}=r^{\prime} \sin (\theta)+r \cos (\theta)
\end{aligned}
$$

\Rightarrow

$$
r^{2} \theta^{\prime}=P Q^{\prime}-Q P^{\prime}
$$

Computing the index

$$
r^{2} \theta^{\prime}=P Q^{\prime}-Q P^{\prime}, \quad r^{2}=P^{2}+Q^{2}
$$

Computing the index

$$
\begin{gathered}
r^{2} \theta^{\prime}=P Q^{\prime}-Q P^{\prime}, \quad r^{2}=P^{2}+Q^{2} \\
\Delta \theta=\int_{t=0}^{1} \theta^{\prime} d t=\int_{t=0}^{1} \frac{P Q^{\prime}-Q P^{\prime}}{P^{2}+Q^{2}} d t
\end{gathered}
$$

Computing the index

$$
\begin{gathered}
r^{2} \theta^{\prime}=P Q^{\prime}-Q P^{\prime}, \quad r^{2}=P^{2}+Q^{2} \\
\Delta \theta=\int_{t=0}^{1} \theta^{\prime} d t=\int_{t=0}^{1} \frac{P Q^{\prime}-Q P^{\prime}}{P^{2}+Q^{2}} d t \\
=\int_{t=0}^{1}(P, Q) \cdot\left(\frac{Q^{\prime}}{P^{2}+Q^{2}},-\frac{P^{\prime}}{P^{2}+Q^{2}}\right) d t
\end{gathered}
$$

Computing the index

$$
\begin{gathered}
r^{2} \theta^{\prime}=P Q^{\prime}-Q P^{\prime}, \quad r^{2}=P^{2}+Q^{2} \\
\Delta \theta=\int_{t=0}^{1} \theta^{\prime} d t=\int_{t=0}^{1} \frac{P Q^{\prime}-Q P^{\prime}}{P^{2}+Q^{2}} d t \\
=\int_{t=0}^{1}(P, Q) \cdot\left(\frac{Q^{\prime}}{P^{2}+Q^{2}},-\frac{P^{\prime}}{P^{2}+Q^{2}}\right) d t \\
=\oint_{C} \frac{P d Q-Q d P}{P^{2}+Q^{2}}
\end{gathered}
$$

Computing the index

$$
\begin{gathered}
r^{2} \theta^{\prime}=P Q^{\prime}-Q P^{\prime}, \quad r^{2}=P^{2}+Q^{2} \\
\Delta \theta=\int_{t=0}^{1} \theta^{\prime} d t=\int_{t=0}^{1} \frac{P Q^{\prime}-Q P^{\prime}}{P^{2}+Q^{2}} d t \\
=\int_{t=0}^{1}(P, Q) \cdot\left(\frac{Q^{\prime}}{P^{2}+Q^{2}},-\frac{P^{\prime}}{P^{2}+Q^{2}}\right) d t \\
=\oint_{C} \frac{P d Q-Q d P}{P^{2}+Q^{2}} \\
\longrightarrow \quad I_{f}(C)=\frac{\Delta \theta}{2 \pi}=\frac{1}{2 \pi} \oint_{C} \frac{P d Q-Q d P}{P^{2}+Q^{2}} \longleftarrow
\end{gathered}
$$

Example

Let $f(x, y)=(-y, x)$,

Example

Let $f(x, y)=(-y, x)$, and let C be the unit circle centered at the origin parametrized by $\gamma(t)=(\cos (t), \sin (t))$ for $t \in[0,2 \pi]$.

Example

Let $f(x, y)=(-y, x)$, and let C be the unit circle centered at the origin parametrized by $\gamma(t)=(\cos (t), \sin (t))$ for $t \in[0,2 \pi]$. Then $P(x, y)=-\sin (t)$ and $Q(x, y)=\cos (t)$.

Example

Let $f(x, y)=(-y, x)$, and let C be the unit circle centered at the origin parametrized by $\gamma(t)=(\cos (t), \sin (t))$ for $t \in[0,2 \pi]$.
Then $P(x, y)=-\sin (t)$ and $Q(x, y)=\cos (t)$.

$$
I_{f}(C)=\frac{1}{2 \pi} \int_{t=0}^{1}(P, Q) \cdot\left(\frac{Q^{\prime}}{P^{2}+Q^{2}},-\frac{P^{\prime}}{P^{2}+Q^{2}}\right) d t
$$

Example

Let $f(x, y)=(-y, x)$, and let C be the unit circle centered at the origin parametrized by $\gamma(t)=(\cos (t), \sin (t))$ for $t \in[0,2 \pi]$. Then $P(x, y)=-\sin (t)$ and $Q(x, y)=\cos (t)$.

$$
\begin{aligned}
I_{f}(C) & =\frac{1}{2 \pi} \int_{t=0}^{1}(P, Q) \cdot\left(\frac{Q^{\prime}}{P^{2}+Q^{2}},-\frac{P^{\prime}}{P^{2}+Q^{2}}\right) d t \\
& =\frac{1}{2 \pi} \int_{t=0}^{2 \pi}(-\sin (t), \cos (t)) \cdot\left(\frac{-\sin (t)}{1}, \frac{\cos (t)}{1}\right) d t
\end{aligned}
$$

Example

Let $f(x, y)=(-y, x)$, and let C be the unit circle centered at the origin parametrized by $\gamma(t)=(\cos (t), \sin (t))$ for $t \in[0,2 \pi]$. Then $P(x, y)=-\sin (t)$ and $Q(x, y)=\cos (t)$.

$$
\begin{aligned}
I_{f}(C) & =\frac{1}{2 \pi} \int_{t=0}^{1}(P, Q) \cdot\left(\frac{Q^{\prime}}{P^{2}+Q^{2}},-\frac{P^{\prime}}{P^{2}+Q^{2}}\right) d t \\
& =\frac{1}{2 \pi} \int_{t=0}^{2 \pi}(-\sin (t), \cos (t)) \cdot\left(\frac{-\sin (t)}{1}, \frac{\cos (t)}{1}\right) d t
\end{aligned}
$$

Example

Let $f(x, y)=(-y, x)$, and let C be the unit circle centered at the origin parametrized by $\gamma(t)=(\cos (t), \sin (t))$ for $t \in[0,2 \pi]$. Then $P(x, y)=-\sin (t)$ and $Q(x, y)=\cos (t)$.

$$
\begin{aligned}
I_{f}(C) & =\frac{1}{2 \pi} \int_{t=0}^{1}(P, Q) \cdot\left(\frac{Q^{\prime}}{P^{2}+Q^{2}},-\frac{P^{\prime}}{P^{2}+Q^{2}}\right) d t \\
& =\frac{1}{2 \pi} \int_{t=0}^{2 \pi}(-\sin (t), \cos (t)) \cdot\left(\frac{-\sin (t)}{1}, \frac{\cos (t)}{1}\right) d t \\
& =\frac{1}{2 \pi} \int_{t=0}^{2 \pi} d t=1
\end{aligned}
$$

Awesomeness

Theorem. If there are no critical points on C or in its interior, then $I_{f}(C)=0$.

Awesomeness

Theorem. If there are no critical points on C or in its interior, then $I_{f}(C)=0$.

Corollary. Let C be a Jordan curve. Suppose there are no critical points on C but that there may be critical points in its interior.

Awesomeness

Theorem. If there are no critical points on C or in its interior, then $I_{f}(C)=0$.

Corollary. Let C be a Jordan curve. Suppose there are no critical points on C but that there may be critical points in its interior. Let C^{\prime} a Jordan curve in the interior of C, and suppose there are no critical points on C^{\prime}, and there are no critical points in the region between C and C^{\prime}.

Awesomeness

Theorem. If there are no critical points on C or in its interior, then $I_{f}(C)=0$.

Corollary. Let C be a Jordan curve. Suppose there are no critical points on C but that there may be critical points in its interior. Let C^{\prime} a Jordan curve in the interior of C, and suppose there are no critical points on C^{\prime}, and there are no critical points in the region between C and C^{\prime}. Then $I_{f}(C)=I_{f}\left(C^{\prime}\right)$.

Awesomeness

Theorem. If there are no critical points on C or in its interior, then $I_{f}(C)=0$.

Corollary. Let C be a Jordan curve. Suppose there are no critical points on C but that there may be critical points in its interior. Let C^{\prime} a Jordan curve in the interior of C, and suppose there are no critical points on C^{\prime}, and there are no critical points in the region between C and C^{\prime}. Then $I_{f}(C)=I_{f}\left(C^{\prime}\right)$.

Corollary. If C and C^{\prime} are Jordan curves containing the same finite set of critical points in their interiors, then $I_{f}(C)=I_{f}\left(C^{\prime}\right)$.

Awesomeness

Definition. Let p be an isolated critical point of f. Define the index of x relative to f to be

$$
I_{f}(p):=I_{f}(C)
$$

where C is any Jordan curve containing p as its only interior critical point. (This is well-defined from the previous corollary.)

Awesomeness

Definition. Let p be an isolated critical point of f. Define the index of x relative to f to be

$$
I_{f}(p):=I_{f}(C)
$$

where C is any Jordan curve containing p as its only interior critical point. (This is well-defined from the previous corollary.)

Theorem. Let p_{1}, \ldots, p_{n} be the critical points inside C. Then

$$
I_{f}(C)=\sum_{i=1}^{n} I_{f}\left(p_{i}\right)
$$

