Math 322

April 4, 2022

Grogu

Statistics job talk

Speaker: Chetkar Jha
Title: Multiple Hypothesis Testing Approach to Estimate the Number of Networks in Sparse Stochastic Block Models

4:45-5:35 Tuesday, Bio 19

Example

$$
\begin{aligned}
x^{\prime} & =-2 y+y z \\
y^{\prime} & =x-x z \\
z^{\prime} & =x y
\end{aligned}
$$

Example

$$
\begin{aligned}
x^{\prime} & =-2 y+y z \\
y^{\prime} & =x-x z \\
z^{\prime} & =x y
\end{aligned}
$$

eigenvalues $=0, \pm \sqrt{2} i$ (origin is nonhyperbolic equilibrium point)

Example

$$
\begin{aligned}
x^{\prime} & =-2 y+y z \\
y^{\prime} & =x-x z \\
z^{\prime} & =x y
\end{aligned}
$$

eigenvalues $=0, \pm \sqrt{2} i$ (origin is nonhyperbolic equilibrium point)
Look for Liapunov function of the form $V=a x^{2}+b y^{2}+c z^{2}$:

Example

$$
\begin{aligned}
x^{\prime} & =-2 y+y z \\
y^{\prime} & =x-x z \\
z^{\prime} & =x y
\end{aligned}
$$

eigenvalues $=0, \pm \sqrt{2} i$ (origin is nonhyperbolic equilibrium point)
Look for Liapunov function of the form $V=a x^{2}+b y^{2}+c z^{2}$:

$$
\dot{V}=2 a x x^{\prime}+2 b y y^{\prime}+2 c z z^{\prime}
$$

Example

$$
\begin{aligned}
x^{\prime} & =-2 y+y z \\
y^{\prime} & =x-x z \\
z^{\prime} & =x y
\end{aligned}
$$

eigenvalues $=0, \pm \sqrt{2} i$ (origin is nonhyperbolic equilibrium point)
Look for Liapunov function of the form $V=a x^{2}+b y^{2}+c z^{2}$:

$$
\begin{aligned}
\dot{V} & =2 a x x^{\prime}+2 b y y^{\prime}+2 c z z^{\prime} \\
& =2 a x(-2 y+y z)+2 b y(x-x z)+2 c z(x y)
\end{aligned}
$$

Example

$$
\begin{aligned}
x^{\prime} & =-2 y+y z \\
y^{\prime} & =x-x z \\
z^{\prime} & =x y
\end{aligned}
$$

eigenvalues $=0, \pm \sqrt{2} i$ (origin is nonhyperbolic equilibrium point)
Look for Liapunov function of the form $V=a x^{2}+b y^{2}+c z^{2}$:

$$
\begin{aligned}
\dot{V} & =2 a x x^{\prime}+2 b y y^{\prime}+2 c z z^{\prime} \\
& =2 a x(-2 y+y z)+2 b y(x-x z)+2 c z(x y) \\
& =2(-2 a+b) x y+(a-b+c) x y z
\end{aligned}
$$

Example

$$
\begin{aligned}
x^{\prime} & =-2 y+y z \\
y^{\prime} & =x-x z \\
z^{\prime} & =x y
\end{aligned}
$$

eigenvalues $=0, \pm \sqrt{2} i$ (origin is nonhyperbolic equilibrium point)
Look for Liapunov function of the form $V=a x^{2}+b y^{2}+c z^{2}$:

$$
\begin{aligned}
\dot{V} & =2 a x x^{\prime}+2 b y y^{\prime}+2 c z z^{\prime} \\
& =2 a x(-2 y+y z)+2 b y(x-x z)+2 c z(x y) \\
& =2(-2 a+b) x y+(a-b+c) x y z
\end{aligned}
$$

Take $a=c=1$ and $b=2$.

Example

$$
\begin{aligned}
x^{\prime} & =-2 y+y z \\
y^{\prime} & =x-x z \\
z^{\prime} & =x y
\end{aligned}
$$

eigenvalues $=0, \pm \sqrt{2} i$ (origin is nonhyperbolic equilibrium point)
Look for Liapunov function of the form $V=a x^{2}+b y^{2}+c z^{2}$:

$$
\begin{aligned}
\dot{V} & =2 a x x^{\prime}+2 b y y^{\prime}+2 c z z^{\prime} \\
& =2 a x(-2 y+y z)+2 b y(x-x z)+2 c z(x y) \\
& =2(-2 a+b) x y+(a-b+c) x y z
\end{aligned}
$$

Take $a=c=1$ and $b=2$. (Sage demo)

Equilibrium points for planar systems

Consider

$$
\begin{aligned}
& x^{\prime}=P(x, y) \\
& y^{\prime}=Q(x, y)
\end{aligned}
$$

having $(0,0)$ as an equilibrium point.

Equilibrium points for planar systems

Consider

$$
\begin{aligned}
& x^{\prime}=P(x, y) \\
& y^{\prime}=Q(x, y)
\end{aligned}
$$

having $(0,0)$ as an equilibrium point. Possibilities:

Equilibrium points for planar systems

Consider

$$
\begin{aligned}
& x^{\prime}=P(x, y) \\
& y^{\prime}=Q(x, y)
\end{aligned}
$$

having $(0,0)$ as an equilibrium point. Possibilities:

- The origin is a center if there exists $\delta>0$ such that every trajectory with initial condition in $B_{\delta} \backslash\{(0,0)\}$ is a closed curve containing $(0,0)$ in its interior.

Equilibrium points for planar systems

Consider

$$
\begin{aligned}
& x^{\prime}=P(x, y) \\
& y^{\prime}=Q(x, y)
\end{aligned}
$$

having $(0,0)$ as an equilibrium point. Possibilities:

- The origin is a center if there exists $\delta>0$ such that every trajectory with initial condition in $B_{\delta} \backslash\{(0,0)\}$ is a closed curve containing $(0,0)$ in its interior.
- Let $r\left(t, r_{0}, \theta_{0}\right)$ and $\theta\left(t, r_{0}, \theta_{0}\right)$ denote the solution to our system in polar coordinates and with initial conditions $r(0)=r_{0}$ and $\theta(0)=\theta_{0}$. The origin is a stable focus if there exists $\delta>0$ such that $0<r_{0}<\delta$ and $\theta_{0} \in \mathbb{R}$ imply $r\left(t, r_{0}, \theta_{0}\right) \rightarrow(0,0)$ and $\left|\theta\left(t, r_{0}, \theta_{0}\right)\right| \rightarrow \infty$ as $t \rightarrow \infty$. It is an unstable focus if the same holds as $t \rightarrow-\infty$.

Equilibrium points for planar systems

- The origin is a stable node if there exists $\delta>0$ such that for $0<r_{0}<\delta$ and $\theta_{0} \in \mathbb{R}$, we have $r\left(t, r_{0}, \theta_{0}\right) \rightarrow(0,0)$ as $t \rightarrow \infty$ and $\lim _{t \rightarrow \infty} \theta\left(t, r_{0}, \theta_{0}\right)$ exists. In other words, the trajectories approach the origin with a well-defined tangent. It's an unstable node if the same holds with $t \rightarrow-\infty$. A node is called proper if every ray through the origin is tangent to some trajectory.

Equilibrium points for planar systems

- The origin is a stable node if there exists $\delta>0$ such that for $0<r_{0}<\delta$ and $\theta_{0} \in \mathbb{R}$, we have $r\left(t, r_{0}, \theta_{0}\right) \rightarrow(0,0)$ as $t \rightarrow \infty$ and $\lim _{t \rightarrow \infty} \theta\left(t, r_{0}, \theta_{0}\right)$ exists. In other words, the trajectories approach the origin with a well-defined tangent. It's an unstable node if the same holds with $t \rightarrow-\infty$. A node is called proper if every ray through the origin is tangent to some trajectory.
- The origin is a topological saddle if it is locally homeomorphic to a saddle for a linear system.

Equilibrium points for planar systems

- The origin is a stable node if there exists $\delta>0$ such that for $0<r_{0}<\delta$ and $\theta_{0} \in \mathbb{R}$, we have $r\left(t, r_{0}, \theta_{0}\right) \rightarrow(0,0)$ as $t \rightarrow \infty$ and $\lim _{t \rightarrow \infty} \theta\left(t, r_{0}, \theta_{0}\right)$ exists. In other words, the trajectories approach the origin with a well-defined tangent. It's an unstable node if the same holds with $t \rightarrow-\infty$. A node is called proper if every ray through the origin is tangent to some trajectory.
- The origin is a topological saddle if it is locally homeomorphic to a saddle for a linear system.
- The origin is a center-focus if there exists a sequence of closed solution curves Γ_{n} with Γ_{n+1} in the interior of Γ_{n} such that $\Gamma_{k} \rightarrow(0,0)$ as $k \rightarrow \infty$ and such that every solution with initial condition between Γ_{n} and Γ_{n+1} spirals toward either Γ_{n} or Γ_{n+1} as $t \rightarrow \pm \infty$.

Example of a center focus

$$
\begin{aligned}
& x^{\prime}=-y+x \sqrt{x^{2}+y^{2}} \sin \left(\frac{1}{\sqrt{x^{2}+y^{2}}}\right) \\
& y^{\prime}=x+y \sqrt{x^{2}+y^{2}} \sin \left(\frac{1}{\sqrt{x^{2}+y^{2}}}\right) .
\end{aligned}
$$

Example of a center focus

$$
\begin{aligned}
& x^{\prime}=-y+x \sqrt{x^{2}+y^{2}} \sin \left(\frac{1}{\sqrt{x^{2}+y^{2}}}\right) \\
& y^{\prime}=x+y \sqrt{x^{2}+y^{2}} \sin \left(\frac{1}{\sqrt{x^{2}+y^{2}}}\right) .
\end{aligned}
$$

In polar coordinates:

$$
\begin{aligned}
& r^{\prime}=r^{2} \sin \left(\frac{1}{r}\right) \\
& \theta^{\prime}=1
\end{aligned}
$$

for $r>0$, and $r^{\prime}=0$ for $r=0$.

Example of a center focus

Comparison with linearized system: hyperbolic case

LINEARIZED	NONLINEAR
saddle	saddle

Comparison with linearized system: hyperbolic case

LINEARIZED	NONLINEAR
saddle center	saddle
center, focus, center-focus	

Comparison with linearized system: hyperbolic case

LINEARIZED	NONLINEAR
saddle	saddle
center	center, focus, center-focus
center	center, focus in analytic case

Comparison with linearized system: hyperbolic case

LINEARIZED	NONLINEAR
saddle	saddle
center	center, focus, center-focus
center	center, focus in analytic case
node	node or focus

Comparison with linearized system: hyperbolic case

LINEARIZED	NONLINEAR
saddle	saddle
center	center, focus, center-focus
center	center, focus in analytic case
node	node or focus
node	node in C^{2} case

Comparison with linearized system: hyperbolic case

LINEARIZED	NONLINEAR
saddle	saddle
center	center, focus, center-focus
center	center, focus in analytic case
node	node or focus
node	node in C^{2} case
focus	node or focus

Comparison with linearized system: hyperbolic case

LINEARIZED	NONLINEAR
saddle	saddle
center	center, focus, center-focus
center	center, focus in analytic case
node	node or focus
node	node in C^{2} case
focus	node or focus
focus	focus in C^{2} case

Comparison with linearized system: hyperbolic case

LINEARIZED	NONLINEAR
saddle	saddle
center	center, focus, center-focus
center	center, focus in analytic case
node	node or focus
node	node in C^{2} case
focus	node or focus
focus	focus in C^{2} case

See course homepage for Perron's example of a node that turns into a focus upon the addition of non-linear terms:

$$
\begin{aligned}
& x^{\prime}=-x-\frac{y}{\log \sqrt{x^{2}+y^{2}}} \\
& y^{\prime}=-y+\frac{x}{\log \sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

Comparison with linearized system: non-hyperbolic equilibria

Suppose the linearized system at x_{0} is nonzero, and x_{0} is non-hyperbolic. The only new possibilities are (see Perko):

Comparison with linearized system: non-hyperbolic equilibria

Suppose the linearized system at x_{0} is nonzero, and x_{0} is non-hyperbolic. The only new possibilities are (see Perko):

- saddle-nodes (two hyperbolic sectors, one parabolic sector)

Comparison with linearized system: non-hyperbolic equilibria

Suppose the linearized system at x_{0} is nonzero, and x_{0} is non-hyperbolic. The only new possibilities are (see Perko):

- saddle-nodes (two hyperbolic sectors, one parabolic sector)
- critical points with elliptic domains (one elliptic sector, one hyperbolic sector, two parabolic sectors, four separatrices)

Comparison with linearized system: non-hyperbolic equilibria

Suppose the linearized system at x_{0} is nonzero, and x_{0} is non-hyperbolic. The only new possibilities are (see Perko):

- saddle-nodes (two hyperbolic sectors, one parabolic sector)
- critical points with elliptic domains (one elliptic sector, one hyperbolic sector, two parabolic sectors, four separatrices)
- cusps (two hyperbolic sectors, two separatrices):

