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Example

x ′ = −2y + yz
y ′ = x − xz
z ′ = xy

eigenvalues = 0,±
√

2i (origin is nonhyperbolic equilibrium point)

Look for Liapunov function of the form V = ax2 + by2 + cz2:

V̇ = 2axx ′ + 2byy ′ + 2czz ′

= 2ax(−2y + yz) + 2by(x − xz) + 2cz(xy)
= 2(−2a + b)xy + (a − b + c)xyz .

Take a = c = 1 and b = 2. (Sage demo)
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Equilibrium points for planar systems

Consider

x ′ = P(x , y)
y ′ = Q(x , y)

having (0, 0) as an equilibrium point.

Possibilities:

I The origin is a center if there exists δ > 0 such that every
trajectory with initial condition in Bδ \ {(0, 0)} is a closed
curve containing (0, 0) in its interior.

I Let r(t, r0, θ0) and θ(t, r0, θ0) denote the solution to our
system in polar coordinates and with initial
conditions r(0) = r0 and θ(0) = θ0. The origin is a stable
focus if there exists δ > 0 such that 0 < r0 < δ and θ0 ∈ R
imply r(t, r0, θ0)→ (0, 0) and |θ(t, r0, θ0)| → ∞ as t →∞. It
is an unstable focus if the same holds as t → −∞.
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Equilibrium points for planar systems

I The origin is a stable node if there exists δ > 0 such that
for 0 < r0 < δ and θ0 ∈ R, we have r(t, r0, θ0)→ (0, 0)
as t →∞ and limt→∞ θ(t, r0, θ0) exists. In other words, the
trajectories approach the origin with a well-defined tangent.
It’s an unstable node if the same holds with t → −∞. A
node is called proper if every ray through the origin is tangent
to some trajectory.

I The origin is a topological saddle if it is locally
homeomorphic to a saddle for a linear system.

I The origin is a center-focus if there exists a sequence of
closed solution curves Γn with Γn+1 in the interior of Γn such
that Γk → (0, 0) as k →∞ and such that every solution with
initial condition between Γn and Γn+1 spirals toward either Γn
or Γn+1 as t → ±∞.
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Example of a center focus

x ′ = −y + x
√

x2 + y2 sin
(

1√
x2 + y2

)

y ′ = x + y
√

x2 + y2 sin
(

1√
x2 + y2

)
.

In polar coordinates:

r ′ = r2 sin
(1

r

)
θ′ = 1

for r > 0, and r ′ = 0 for r = 0.
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Example of a center focus



Comparison with linearized system: hyperbolic case

linearized nonlinear
saddle saddle

center center, focus, center-focus
center center, focus in analytic case
node node or focus
node node in C2 case
focus node or focus
focus focus in C2 case

See course homepage for Perron’s example of a node that turns
into a focus upon the addition of non-linear terms:

x ′ = −x − y
log
√

x2 + y2

y ′ = −y + x
log
√

x2 + y2
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Comparison with linearized system: non-hyperbolic
equilibria

Suppose the linearized system at x0 is nonzero, and x0 is
non-hyperbolic. The only new possibilities are (see Perko):

I saddle-nodes (two hyperbolic sectors, one parabolic sector)
I critical points with elliptic domains (one elliptic sector, one

hyperbolic sector, two parabolic sectors, four separatrices)
I cusps (two hyperbolic sectors, two separatrices):
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