Math 322

April 1, 2022

Statistics search job talk

Eli Wolff, University of Oregon
Two-Dimensional Electrostatics and Universality in Random Matrix Theory

4:45-5:35 Thursday, E314

Projective space

Projective space

$$
a_{1} x^{2}+a_{2} x y+a_{3} x+a_{4} y^{2}+a_{5} y+a_{6}=0
$$

Projective space

$$
a_{1} x^{2}+a_{2} x y+a_{3} x+a_{4} y^{2}+a_{5} y+a_{6}=0
$$

$$
a_{1} x^{2}+a_{2} x y+a_{3} x z+a_{4} y^{2}+a_{5} y z+a_{6} z^{2}=0
$$

Projective space

$$
\begin{gathered}
a_{1} x^{2}+a_{2} x y+a_{3} x+a_{4} y^{2}+a_{5} y+a_{6}=0 \\
a_{1} x^{2}+a_{2} x y+a_{3} x z+a_{4} y^{2}+a_{5} y z+a_{6} z^{2}=0 \\
\lambda a_{1} x^{2}+\lambda a_{2} x y+\lambda a_{3} x z+\lambda a_{4} y^{2}+\lambda a_{5} y z+\lambda a_{6} z^{2}=0
\end{gathered}
$$

Projective space

$$
\begin{gathered}
a_{1} x^{2}+a_{2} x y+a_{3} x+a_{4} y^{2}+a_{5} y+a_{6}=0 \\
a_{1} x^{2}+a_{2} x y+a_{3} x z+a_{4} y^{2}+a_{5} y z+a_{6} z^{2}=0 \\
\lambda a_{1} x^{2}+\lambda a_{2} x y+\lambda a_{3} x z+\lambda a_{4} y^{2}+\lambda a_{5} y z+\lambda a_{6} z^{2}=0 \\
\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right) \in \mathbb{P}^{5}
\end{gathered}
$$

Projective space

$$
\begin{gathered}
a_{1} x^{2}+a_{2} x y+a_{3} x+a_{4} y^{2}+a_{5} y+a_{6}=0 \\
a_{1} x^{2}+a_{2} x y+a_{3} x z+a_{4} y^{2}+a_{5} y z+a_{6} z^{2}=0 \\
\lambda a_{1} x^{2}+\lambda a_{2} x y+\lambda a_{3} x z+\lambda a_{4} y^{2}+\lambda a_{5} y z+\lambda a_{6} z^{2}=0 \\
\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right) \in \mathbb{P}^{5} \\
\{\text { conics }\}=\mathbb{P}^{5}
\end{gathered}
$$

Stability of equilibrium point

Definition. An equilibrium point x_{0} for a system $x^{\prime}=f(x)$ is stable if for each open neighborhood U of x_{0}, there exists another open neighborhood W of x_{0} such that if $p \in W$, then $\phi(t, p) \in U$ for all $t \geq 0$.

Stability of equilibrium point

Definition. An equilibrium point x_{0} for a system $x^{\prime}=f(x)$ is stable if for each open neighborhood U of x_{0}, there exists another open neighborhood W of x_{0} such that if $p \in W$, then $\phi(t, p) \in U$ for all $t \geq 0$. Otherwise, x_{0} is unstable.

Stability of equilibrium point

Definition. An equilibrium point x_{0} for a system $x^{\prime}=f(x)$ is stable if for each open neighborhood U of x_{0}, there exists another open neighborhood W of x_{0} such that if $p \in W$, then $\phi(t, p) \in U$ for all $t \geq 0$. Otherwise, x_{0} is unstable.

We say x_{0} is asymptotically stable if it has an open neighborhood W such that $\lim _{t \rightarrow \infty} \phi_{t}(p)=x_{0}$ for all $p \in W$.

Liapunov functions

Theorem. Let $f \in C^{1}(E)$ and $f\left(x_{0}\right)=0$. Let $V: E \rightarrow \mathbb{R}$ also be C^{1} (continuously differentiable). Suppose that $V(p) \geq 0$ and $V(p)=0$ if and only if $p=x_{0}$.

Liapunov functions

Theorem. Let $f \in C^{1}(E)$ and $f\left(x_{0}\right)=0$. Let $V: E \rightarrow \mathbb{R}$ also be C^{1} (continuously differentiable). Suppose that $V(p) \geq 0$ and $V(p)=0$ if and only if $p=x_{0}$. Then:

1. If \dot{V} is negative semidefinite $\left(\dot{V}(p) \leq 0\right.$ for all $\left.p \in E \backslash\left\{x_{0}\right\}\right)$ then x_{0} is stable.

Liapunov functions

Theorem. Let $f \in C^{1}(E)$ and $f\left(x_{0}\right)=0$. Let $V: E \rightarrow \mathbb{R}$ also be C^{1} (continuously differentiable). Suppose that $V(p) \geq 0$ and $V(p)=0$ if and only if $p=x_{0}$. Then:

1. If \dot{V} is negative semidefinite $\left(\dot{V}(p) \leq 0\right.$ for all $\left.p \in E \backslash\left\{x_{0}\right\}\right)$ then x_{0} is stable.
2. If \dot{V} is negative definite $\left(\dot{V}(p)<0\right.$ for all $\left.p \in E \backslash\left\{x_{0}\right\}\right)$ then x_{0} is asymptotically stable.

Liapunov functions

Theorem. Let $f \in C^{1}(E)$ and $f\left(x_{0}\right)=0$. Let $V: E \rightarrow \mathbb{R}$ also be C^{1} (continuously differentiable). Suppose that $V(p) \geq 0$ and $V(p)=0$ if and only if $p=x_{0}$. Then:

1. If \dot{V} is negative semidefinite $\left(\dot{V}(p) \leq 0\right.$ for all $\left.p \in E \backslash\left\{x_{0}\right\}\right)$ then x_{0} is stable.
2. If \dot{V} is negative definite $\left(\dot{V}(p)<0\right.$ for all $\left.p \in E \backslash\left\{x_{0}\right\}\right)$ then x_{0} is asymptotically stable.
3. If \dot{V} is positive definite $\left(\dot{V}(p)>0\right.$ for all $\left.p \in E \backslash\left\{x_{0}\right\}\right)$, then x_{0} is unstable.

Example

$$
\begin{aligned}
x^{\prime} & =-2 y+y z \\
y^{\prime} & =x-x z \\
z^{\prime} & =x y
\end{aligned}
$$

Example

$$
\begin{aligned}
x^{\prime} & =-2 y+y z \\
y^{\prime} & =x-x z \\
z^{\prime} & =x y
\end{aligned}
$$

eigenvalues $=0, \pm \sqrt{2} i$ (origin is nonhyperbolic equilibrium point)

Example

$$
\begin{aligned}
x^{\prime} & =-2 y+y z \\
y^{\prime} & =x-x z \\
z^{\prime} & =x y
\end{aligned}
$$

eigenvalues $=0, \pm \sqrt{2} i$ (origin is nonhyperbolic equilibrium point)
Look for Liapunov function of the form $V=a x^{2}+b y^{2}+c z^{2}$:

Example

$$
\begin{aligned}
x^{\prime} & =-2 y+y z \\
y^{\prime} & =x-x z \\
z^{\prime} & =x y
\end{aligned}
$$

eigenvalues $=0, \pm \sqrt{2} i$ (origin is nonhyperbolic equilibrium point)
Look for Liapunov function of the form $V=a x^{2}+b y^{2}+c z^{2}$:

$$
\dot{V}=2 a x x^{\prime}+2 b y y^{\prime}+2 c z z^{\prime}
$$

Example

$$
\begin{aligned}
x^{\prime} & =-2 y+y z \\
y^{\prime} & =x-x z \\
z^{\prime} & =x y
\end{aligned}
$$

eigenvalues $=0, \pm \sqrt{2} i$ (origin is nonhyperbolic equilibrium point)
Look for Liapunov function of the form $V=a x^{2}+b y^{2}+c z^{2}$:

$$
\begin{aligned}
\dot{V} & =2 a x x^{\prime}+2 b y y^{\prime}+2 c z z^{\prime} \\
& =2 a x(-2 y+y z)+2 b y(x-x z)+2 c z(x y)
\end{aligned}
$$

Example

$$
\begin{aligned}
x^{\prime} & =-2 y+y z \\
y^{\prime} & =x-x z \\
z^{\prime} & =x y
\end{aligned}
$$

eigenvalues $=0, \pm \sqrt{2} i$ (origin is nonhyperbolic equilibrium point)
Look for Liapunov function of the form $V=a x^{2}+b y^{2}+c z^{2}$:

$$
\begin{aligned}
\dot{V} & =2 a x x^{\prime}+2 b y y^{\prime}+2 c z z^{\prime} \\
& =2 a x(-2 y+y z)+2 b y(x-x z)+2 c z(x y) \\
& =2(-2 a+b) x y+(a-b+c) x y z
\end{aligned}
$$

Example

$$
\begin{aligned}
x^{\prime} & =-2 y+y z \\
y^{\prime} & =x-x z \\
z^{\prime} & =x y
\end{aligned}
$$

eigenvalues $=0, \pm \sqrt{2} i$ (origin is nonhyperbolic equilibrium point)
Look for Liapunov function of the form $V=a x^{2}+b y^{2}+c z^{2}$:

$$
\begin{aligned}
\dot{V} & =2 a x x^{\prime}+2 b y y^{\prime}+2 c z z^{\prime} \\
& =2 a x(-2 y+y z)+2 b y(x-x z)+2 c z(x y) \\
& =2(-2 a+b) x y+(a-b+c) x y z
\end{aligned}
$$

Take $a=c=1$ and $b=2$.

Example

$$
\begin{aligned}
x^{\prime} & =-2 y+y z \\
y^{\prime} & =x-x z \\
z^{\prime} & =x y
\end{aligned}
$$

eigenvalues $=0, \pm \sqrt{2} i$ (origin is nonhyperbolic equilibrium point)
Look for Liapunov function of the form $V=a x^{2}+b y^{2}+c z^{2}$:

$$
\begin{aligned}
\dot{V} & =2 a x x^{\prime}+2 b y y^{\prime}+2 c z z^{\prime} \\
& =2 a x(-2 y+y z)+2 b y(x-x z)+2 c z(x y) \\
& =2(-2 a+b) x y+(a-b+c) x y z
\end{aligned}
$$

Take $a=c=1$ and $b=2$. (Sage demo)

