
;

Math 322

March 18, 2022



During break

I Think about projects.
I Homework due on Monday, March 28.



Stable manifold theorem

Theorem. f ∈ C1(E ),

f (0) = 0,

Df0: k eigenvalues with negative real part and n − k eigenvalues
with positive real part.

∃ k-dimensional differentiable manifold S tangent to the stable
subspace E s of the linearized system x ′ = Df0(x) at 0

and ∃ (n− k)-dimensional differentiable manifold U tangent to the
unstable space Eu of the linearized system

such that
lim

t→∞
φt(p) = 0

for any p ∈ S and
lim

t→−∞
φ(p) = 0

for any p ∈ U.
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Global stable and unstable manifolds

Define
W s(0) := ∪t≤0φt(S)

and
W u(0) := ∪t≥0φt(U).

These manifolds (i) do not depend on our choice of local stable
and unstable manifolds S and U, (ii) are invariant under φt , and
(iii) for all p ∈W s(0),

lim
t→∞

φt(p) = 0

and for all p ∈W u(0),

lim
t→−∞

φt(p) = 0.
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Center manifold theorem

Theorem. f ∈ C1(E ),

f (0) = 0,

Df0: k eigenvalues with negative real part, j eigenvalues with
positive real part, and n − k − j eigenvalues with zero real part

In addition to the global stable and unstable manifolds, there also
exists a global center manifold tangent to the center space of the
linearized system and invariant under flow.
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Hartman-Grobman theorem

f ∈ C1(E ), f (0) = 0, Jf (0) has k eigenvalues with positive real
part and n − k with negative real part

(i.e., the origin is a
hyperbolic equilibrium point for the system)

Theorem. There exist neighborhoods of the origin U and V and a
homeomorphism H : U → V such that for all x0 ∈ U, there is an
interval I containing the origin and

H(φt(x0)) = eJf (0)tH(x0).

Proof. Successive approximations. See text.
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Example

x ′ = −x
y ′ = y + x2

Solution with initial condition (x0, y0):

x(t) = x0e−t

y(t) =
(

y0 + 1
3x2

0

)
et − 1

3x2
0 e−2t .

Homeomorphism:

H(x , y) =
(

x , y + 1
3x2

)
.

Check that H preserves solutions and the (un)stable manifolds.
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