Math 322

March 7, 2022

Derivatives

Let $E \stackrel{\text { open }}{\subseteq} \mathbb{R}^{n}$. The derivative of $f: E \rightarrow \mathbb{R}^{n}$

Derivatives

Let $E \stackrel{\text { open }}{\subseteq} \mathbb{R}^{n}$. The derivative of $f: E \rightarrow \mathbb{R}^{n}$ is a linear function

$$
D f_{p}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

Derivatives

Let $E \stackrel{\text { open }}{\subseteq} \mathbb{R}^{n}$. The derivative of $f: E \rightarrow \mathbb{R}^{n}$ is a linear function

$$
D f_{p}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

approximating f near p :

$$
f(p+h) \approx f(p)+D f_{p}(h)
$$

for small h.

Derivatives

Let $\mathcal{L}\left(\mathbb{R}^{n}\right)$ denote the linear space of linear functions $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

Derivatives

Let $\mathcal{L}\left(\mathbb{R}^{n}\right)$ denote the linear space of linear functions $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
If $L \in \mathcal{L}\left(\mathbb{R}^{n}\right)$, define

$$
\|L\|=\max _{|x| \leq 1}|L(x)| .
$$

If $A \in M_{n}(\mathbb{R})$ is the matrix representing L, then $\|L\|=\|A\|$.

Derivatives

Let $\mathcal{L}\left(\mathbb{R}^{n}\right)$ denote the linear space of linear functions $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
If $L \in \mathcal{L}\left(\mathbb{R}^{n}\right)$, define

$$
\|L\|=\max _{|x| \leq 1}|L(x)| .
$$

If $A \in M_{n}(\mathbb{R})$ is the matrix representing L, then $\|L\|=\|A\|$. Hence,

$$
|L(x)|=|A x| \leq\|A\||x|=\|L\||x| .
$$

Derivatives

Let $\mathcal{L}\left(\mathbb{R}^{n}\right)$ denote the linear space of linear functions $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
If $L \in \mathcal{L}\left(\mathbb{R}^{n}\right)$, define

$$
\|L\|=\max _{|x| \leq 1}|L(x)| .
$$

If $A \in M_{n}(\mathbb{R})$ is the matrix representing L, then $\|L\|=\|A\|$. Hence,

$$
|L(x)|=|A x| \leq\|A\||x|=\|L\||x| .
$$

Definition. The function $f: E \rightarrow \mathbb{R}^{n}$ is continuously differentiable if

$$
\begin{aligned}
E & \rightarrow \mathcal{L}\left(\mathbb{R}^{n}\right) \\
p & \mapsto D f_{p}
\end{aligned}
$$

is continuous.

Derivatives

The function $f: E \rightarrow \mathbb{R}^{n}$ is continuously differentiable if and only if the partials of f exist and are continuous.

Derivatives

The function $f: E \rightarrow \mathbb{R}^{n}$ is continuously differentiable if and only if the partials of f exist and are continuous.

In that case, the the matrix corresponding to $D f_{p}$ is the Jacobian matrix,

Derivatives

The function $f: E \rightarrow \mathbb{R}^{n}$ is continuously differentiable if and only if the partials of f exist and are continuous.

In that case, the the matrix corresponding to $D f_{p}$ is the Jacobian matrix, whose j-th column is the j-th partial of f :

$$
\frac{\partial f}{\partial x_{j}}(p)=\left(\begin{array}{c}
\frac{\partial f_{1}}{\partial x_{j}}(p) \\
\frac{\partial f_{2}}{\partial x_{j}}(p) \\
\vdots \\
\frac{\partial f_{n}}{\partial x_{j}}(p)
\end{array}\right)
$$

Derivatives

The function $f: E \rightarrow \mathbb{R}^{n}$ is continuously differentiable if and only if the partials of f exist and are continuous.

In that case, the the matrix corresponding to $D f_{p}$ is the Jacobian matrix, whose j-th column is the j-th partial of f :

$$
\frac{\partial f}{\partial x_{j}}(p)=\left(\begin{array}{c}
\frac{\partial f_{1}}{\partial x_{j}}(p) \\
\frac{\partial f_{2}}{\partial x_{j}}(p) \\
\vdots \\
\frac{\partial f_{n}}{\partial x_{j}}(p)
\end{array}\right)
$$

Notation. The space of continuously differentiable functions $E \rightarrow \mathcal{L}\left(\mathbb{R}^{n}\right)$ is denoted $C^{1}(E)$.

Lipschitz condition

Definition. Let $E \subseteq \mathbb{R}^{n}$ be an open subset. Then a function $f: E \rightarrow \mathbb{R}^{n}$ is Lipschitz if there exists a constant K such that

$$
|f(x)-f(y)| \leq K|x-y|
$$

for all $x, y \in E$.

Lipschitz condition

Definition. Let $E \subseteq \mathbb{R}^{n}$ be an open subset. Then a function $f: E \rightarrow \mathbb{R}^{n}$ is Lipschitz if there exists a constant K such that

$$
|f(x)-f(y)| \leq K|x-y|
$$

for all $x, y \in E$.
The function f is locally Lipschitz on E if for each $x_{0} \in E$, there exists $\varepsilon>0$ and a constant K such that

$$
|f(x)-f(y)| \leq K|x-y|
$$

for all

$$
x, y \in N_{\varepsilon}\left(x_{0}\right):=\left\{x \in \mathbb{R}^{n}:\left|x-x_{0}\right|<\varepsilon\right\}
$$

Lipschitz condition

Definition. Let $E \subseteq \mathbb{R}^{n}$ be an open subset. Then a function $f: E \rightarrow \mathbb{R}^{n}$ is Lipschitz if there exists a constant K such that

$$
|f(x)-f(y)| \leq K|x-y|
$$

for all $x, y \in E$.
The function f is locally Lipschitz on E if for each $x_{0} \in E$, there exists $\varepsilon>0$ and a constant K such that

$$
|f(x)-f(y)| \leq K|x-y|
$$

for all

$$
x, y \in N_{\varepsilon}\left(x_{0}\right):=\left\{x \in \mathbb{R}^{n}:\left|x-x_{0}\right|<\varepsilon\right\}
$$

Proposition. If $f \in C^{1}(E)$, then f is locally Lipschitz.

Fundamental existence and uniqueness theorem

Theorem. Let E be an open subset of \mathbb{R}^{n} containing x_{0}, and let $f \in C^{1}(E)$. Then there exists $a>0$ such that the initial value problem

$$
\begin{aligned}
x^{\prime} & =f(x) \\
x(0) & =x_{0}
\end{aligned}
$$

has a unique solution $x(t)$ on $[-a, a]$.

Fundamental existence and uniqueness theorem

Theorem. Let E be an open subset of \mathbb{R}^{n} containing x_{0}, and let $f \in C^{1}(E)$. Then there exists $a>0$ such that the initial value problem

$$
\begin{aligned}
x^{\prime} & =f(x) \\
x(0) & =x_{0}
\end{aligned}
$$

has a unique solution $x(t)$ on $[-a, a]$.
Method of successive approximations:

$$
\begin{aligned}
T: C(I) & \rightarrow C(I) \\
u & \mapsto x_{0}+\int_{s=0}^{t} f(u(s)) d s .
\end{aligned}
$$

