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Derivatives

Let E
open
⊆ Rn. The derivative of f : E → Rn

is a linear function

Dfp : Rn → Rn

approximating f near p:

f (p + h) ≈ f (p) + Dfp(h)

for small h.
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Derivatives

Let L(Rn) denote the linear space of linear functions Rn → Rn.

If L ∈ L(Rn), define

‖L‖ = max
|x |≤1

|L(x)|.

If A ∈ Mn(R) is the matrix representing L, then ‖L‖ = ‖A‖. Hence,

|L(x)| = |Ax | ≤ ‖A‖|x | = ‖L‖|x |.

Definition. The function f : E → Rn is continuously differentiable
if

E → L(Rn)
p 7→ Dfp

is continuous.
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Derivatives

The function f : E → Rn is continuously differentiable if and only
if the partials of f exist and are continuous.

In that case, the the matrix corresponding to Dfp is the Jacobian
matrix, whose j-th column is the j-th partial of f :

∂f
∂xj

(p) =



∂f1
∂xj

(p)
∂f2
∂xj

(p)
...

∂fn
∂xj

(p)


.

Notation. The space of continuously differentiable
functions E → L(Rn) is denoted C1(E ).
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Lipschitz condition

Definition. Let E ⊆ Rn be an open subset. Then a
function f : E → Rn is Lipschitz if there exists a constant K such
that

|f (x)− f (y)| ≤ K |x − y |

for all x , y ∈ E .

The function f is locally Lipschitz on E if for each x0 ∈ E , there
exists ε > 0 and a constant K such that

|f (x)− f (y)| ≤ K |x − y |

for all
x , y ∈ Nε(x0) := {x ∈ Rn : |x − x0| < ε} .

Proposition. If f ∈ C1(E ), then f is locally Lipschitz.
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Fundamental existence and uniqueness theorem

Theorem. Let E be an open subset of Rn containing x0, and
let f ∈ C1(E ). Then there exists a > 0 such that the initial value
problem

x ′ = f (x)
x(0) = x0

has a unique solution x(t) on [−a, a].

Method of successive approximations:

T : C(I)→ C(I)

u 7→ x0 +
∫ t

s=0
f (u(s)) ds.
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