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Dependence on parameters

Theorem. Let E be an open subset of Rn+m containing the point
(x0, µ0) where x0 ∈ Rn and µ0 ∈ Rm, and assume f ∈ C1(E ).

Then there is a neighborhood1 N(x0) ⊆ Rn of x0, a neighborhood
N(µ0) ⊆ Rm of µ0, and an a > 0 such that for all y ∈ N(x0) and
for all µ ∈ N(µ0), the initial value problem

x ′ = f (x , µ)
x(0) = y

has a unique solution x = x(t, y , µ) with x ∈ C1(R) where
R := [−a, a]× N(x0)× N(µ0).

1A neighborhood of a point is any set that contains an open set containing
the point.
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Maximal interval of existence

Theorem. Consider our initial value problem with f ∈ C1(E ) and
initial condition x0.

There is an interval J = (α, β) with
α, β ∈ R ∪ {±∞} and a solution x(t) defined for t ∈ J such that
if y(t) is any other solution defined on an interval I, then I ⊆ J
and x(t) = y(t) on I. Further, if β ∈ R, i.e., if β 6=∞, then given
any compact (closed and bounded) subset K ⊂ E , then there
exists t ∈ J such that x(t) /∈ K .
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Stable manifold theorem

Theorem. (Stable manifold theorem.) Let E ⊆ Rn and
let f ∈ C1(E ). Suppose that f (0) = 0 and that Df0 has k
eigenvalues with negative real part and n − k eigenvalues with
positive real part.

Then there exists a k-dimensional differentiable manifold S
tangent to the stable subspace E s of the linearized system
x ′ = Df0(x) at 0, and there exists an (n − k)-dimensional
differentiable manifold U tangent to the unstable space Eu of the
linearized system with the properties

lim
t→∞

φt(x0) = 0

for any x0 ∈ S and
lim

t→−∞
φ(x0) = 0

for any x0 ∈ U.
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Flow of a vector field

I(x0): maximal interval of existence for initial condition x0

Ω := {(t, x0) ∈ R× E : t ∈ I(x0)}

φ(t, x0): solution with initial condition x0.

φ : Ω→ Rn

(t, x0) 7→ φ(t, x0) =: φt(x0)

Properties:

(i) φ0(x0) = x0 (ii) φs(φt(x0)) = φs+t(x0) (iii) φ−t(φt(x0)) = x0
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Metric space

Definition. A metric space is a set X with a distance function or
metric,

d : X × X → R

that is positive definite, symmetric, and obeys the triangle
inequality:

1. d(x , y) ≥ 0 with d(x , y) = 0 if and only if x = y
2. d(x , y) = d(y , x)
3. d(x , y) ≤ d(x , z) + d(z , y).

Every metric space (X , d) is a topological space where a
subset U ⊆ X is open if for each u ∈ U, there exists r > 0 such
that the open ball of radius r centered at u is contained in U:

B(u, r) := {x ∈ X : d(u, x) < r} ⊆ U.
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Manifold

Definition. An n-dimensional differentiable manifold is a
connected metric space2 M and an open covering {Uα} (so for
each α in some index set, Uα is an open subset of M and
M = ∪αUα) such that:

1. for all α, there is a homeomorphism

hα : Uα → Vα

where Vα is an open subset of Rn, and
2. if Uα ∩ Uβ 6= ∅, the mapping

hβ ◦ h−1
α : hα(Uα ∩ Uβ)→ hβ(Uα ∩ Uβ)

is continuously differentiable.
Each pair (hα,Uα) is called a chart, and the collection of charts is
called an atlas. The mapping hβ ∩ h−1

α are transition functions.

2More generally, M could be a second-countable Hausdorff toplogical space.



Manifold

Definition. An n-dimensional differentiable manifold is a
connected metric space2 M and an open covering {Uα} (so for
each α in some index set, Uα is an open subset of M and
M = ∪αUα) such that:

1. for all α, there is a homeomorphism

hα : Uα → Vα

where Vα is an open subset of Rn, and

2. if Uα ∩ Uβ 6= ∅, the mapping

hβ ◦ h−1
α : hα(Uα ∩ Uβ)→ hβ(Uα ∩ Uβ)

is continuously differentiable.
Each pair (hα,Uα) is called a chart, and the collection of charts is
called an atlas. The mapping hβ ∩ h−1

α are transition functions.

2More generally, M could be a second-countable Hausdorff toplogical space.



Manifold

Definition. An n-dimensional differentiable manifold is a
connected metric space2 M and an open covering {Uα} (so for
each α in some index set, Uα is an open subset of M and
M = ∪αUα) such that:

1. for all α, there is a homeomorphism

hα : Uα → Vα

where Vα is an open subset of Rn, and
2. if Uα ∩ Uβ 6= ∅, the mapping

hβ ◦ h−1
α : hα(Uα ∩ Uβ)→ hβ(Uα ∩ Uβ)

is continuously differentiable.

Each pair (hα,Uα) is called a chart, and the collection of charts is
called an atlas. The mapping hβ ∩ h−1

α are transition functions.

2More generally, M could be a second-countable Hausdorff toplogical space.



Manifold

Definition. An n-dimensional differentiable manifold is a
connected metric space2 M and an open covering {Uα} (so for
each α in some index set, Uα is an open subset of M and
M = ∪αUα) such that:

1. for all α, there is a homeomorphism

hα : Uα → Vα

where Vα is an open subset of Rn, and
2. if Uα ∩ Uβ 6= ∅, the mapping

hβ ◦ h−1
α : hα(Uα ∩ Uβ)→ hβ(Uα ∩ Uβ)

is continuously differentiable.
Each pair (hα,Uα) is called a chart, and the collection of charts is
called an atlas. The mapping hβ ∩ h−1

α are transition functions.
2More generally, M could be a second-countable Hausdorff toplogical space.


