Math 322

March 2, 2022

Non-linear systems
open subset $E \subseteq \mathbb{R}^{n}$

Non-linear systems

open subset $E \subseteq \mathbb{R}^{n}$
$f \in C(E)$, space of continuous functions $E \rightarrow \mathbb{R}^{n}$
(vector fields defined on E)

Non-linear systems

open subset $E \subseteq \mathbb{R}^{n}$
$f \in C(E)$, space of continuous functions $E \rightarrow \mathbb{R}^{n}$
(vector fields defined on E)
Initial value problem: $x^{\prime}=f(x)$ with $x\left(t_{0}\right)=x_{0} \in E$

Non-linear systems

open subset $E \subseteq \mathbb{R}^{n}$
$f \in C(E)$, space of continuous functions $E \rightarrow \mathbb{R}^{n}$ (vector fields defined on E)

Initial value problem: $x^{\prime}=f(x)$ with $x\left(t_{0}\right)=x_{0} \in E$
Solution: An interval / containing t_{0}

Non-linear systems

open subset $E \subseteq \mathbb{R}^{n}$
$f \in C(E)$, space of continuous functions $E \rightarrow \mathbb{R}^{n}$
(vector fields defined on E)
Initial value problem: $x^{\prime}=f(x)$ with $x\left(t_{0}\right)=x_{0} \in E$
Solution: An interval / containing t_{0} and a parametrized curve $x: I \rightarrow E \subseteq \mathbb{R}^{n}$

Non-linear systems

open subset $E \subseteq \mathbb{R}^{n}$
$f \in C(E)$, space of continuous functions $E \rightarrow \mathbb{R}^{n}$
(vector fields defined on E)
Initial value problem: $x^{\prime}=f(x)$ with $x\left(t_{0}\right)=x_{0} \in E$
Solution: An interval $/$ containing t_{0} and a parametrized curve $x: I \rightarrow E \subseteq \mathbb{R}^{n}$ with $x^{\prime}(t)=f(x(t))$ for all $t \in I$

Non-linear systems

open subset $E \subseteq \mathbb{R}^{n}$
$f \in C(E)$, space of continuous functions $E \rightarrow \mathbb{R}^{n}$
(vector fields defined on E)
Initial value problem: $x^{\prime}=f(x)$ with $x\left(t_{0}\right)=x_{0} \in E$
Solution: An interval $/$ containing t_{0} and a parametrized curve $x: I \rightarrow E \subseteq \mathbb{R}^{n}$ with $x^{\prime}(t)=f(x(t))$ for all $t \in I$ and $x\left(t_{0}\right)=x_{0}$.

Converting non-autonomous systems

$f: E \rightarrow \mathbb{R}^{n}$ is autonomous, i.e., f does not depend on t

Converting non-autonomous systems

$f: E \rightarrow \mathbb{R}^{n}$ is autonomous, i.e., f does not depend on t
A non-autonomous system $x^{\prime}=g(x, t)$ can be converted into an autonomous system by letting $x_{n+1}=t$ and $x_{n+1}^{\prime}=1$.

Goals/Questions

Goals/Questions

- Find conditions under which the initial value problem has a unique solution.

Goals/Questions

- Find conditions under which the initial value problem has a unique solution.
- How do solutions change if f changes slightly?

Goals/Questions

- Find conditions under which the initial value problem has a unique solution.
- How do solutions change if f changes slightly?
- Consider the size of the interval on which the solution exists.

New behavior for non-linear systems

New behavior for non-linear systems

Solutions are no longer necessarily unique.

New behavior for non-linear systems

Solutions are no longer necessarily unique.
Solutions may not be defined on all of \mathbb{R}.

Key idea

We have solved the initial value problem $x^{\prime}(t)=f(x(t))$ with $x(0)=x_{0}$ if we can find a continuous function $x(t)$ satisfying

$$
x(t)=x_{0}+\int_{s=0}^{t} f(x(s)) d s
$$

for all $t \in[-a, a]$ for some $a>0$.

Method of successive approximations

To solve $x^{\prime}(t)=f(x(t))$ with $x(0)=x_{0}$,

Method of successive approximations

To solve $x^{\prime}(t)=f(x(t))$ with $x(0)=x_{0}$, create the sequence of functions

$$
\begin{aligned}
u_{0} & :=x_{0} \\
u_{k+1} & :=x_{0}+\int_{s=0}^{t} f\left(u_{k}(s)\right) d s, \quad \text { for } k \geq 0 .
\end{aligned}
$$

Method of successive approximations

To solve $x^{\prime}(t)=f(x(t))$ with $x(0)=x_{0}$, create the sequence of functions

$$
\begin{aligned}
u_{0} & :=x_{0} \\
u_{k+1} & :=x_{0}+\int_{s=0}^{t} f\left(u_{k}(s)\right) d s, \quad \text { for } k \geq 0 .
\end{aligned}
$$

Hope that $\lim _{n \rightarrow \infty} u_{n}=u(t)$ for some function $u(t)$.

Method of successive approximations

To solve $x^{\prime}(t)=f(x(t))$ with $x(0)=x_{0}$, create the sequence of functions

$$
\begin{aligned}
u_{0} & :=x_{0} \\
u_{k+1} & :=x_{0}+\int_{s=0}^{t} f\left(u_{k}(s)\right) d s, \quad \text { for } k \geq 0 .
\end{aligned}
$$

Hope that $\lim _{n \rightarrow \infty} u_{n}=u(t)$ for some function $u(t)$.
What happens when we take limits on both sides of the equation defining u_{k+1} ?

Example of method of successive approximations

To solve $x^{\prime}(t)=f(x(t))$ with $x(0)=x_{0}$,

Example of method of successive approximations

To solve $x^{\prime}(t)=f(x(t))$ with $x(0)=x_{0}$, create the sequence of functions

$$
\begin{aligned}
u_{0}(t) & :=x_{0} \\
u_{k+1}(t) & :=x_{0}+\int_{s=0}^{t} f\left(u_{k}(s)\right) d s, \quad \text { for } k \geq 0
\end{aligned}
$$

Example of method of successive approximations

To solve $x^{\prime}(t)=f(x(t))$ with $x(0)=x_{0}$, create the sequence of functions

$$
\begin{aligned}
u_{0}(t) & :=x_{0} \\
u_{k+1}(t) & :=x_{0}+\int_{s=0}^{t} f\left(u_{k}(s)\right) d s, \quad \text { for } k \geq 0
\end{aligned}
$$

Example. Apply the method to $x^{\prime}=x t, \quad x(0)=1$.

Example of method of successive approximations

To solve $x^{\prime}(t)=f(x(t))$ with $x(0)=x_{0}$, create the sequence of functions

$$
\begin{aligned}
u_{0}(t) & :=x_{0} \\
u_{k+1}(t) & :=x_{0}+\int_{s=0}^{t} f\left(u_{k}(s)\right) d s, \quad \text { for } k \geq 0
\end{aligned}
$$

Example. Apply the method to $x^{\prime}=x t, \quad x(0)=1$.
First convert to an autonomous system via $x_{1}=x$ and $x_{2}=t$:

$$
\binom{x_{1}^{\prime}}{x_{2}^{\prime}}=\binom{x_{1} x_{2}}{1}=: f\left(x_{1}, x_{2}\right)
$$

with initial condition $\binom{x_{1}(0)}{x_{2}(0)}=\binom{1}{0}$.

