Math 322

February 21, 2022

Outline

- Stability: stable, center, and unstable spaces

Outline

- Stability: stable, center, and unstable spaces
- Linear systems in \mathbb{R}^{3}

Outline

- Stability: stable, center, and unstable spaces
- Linear systems in \mathbb{R}^{3}
- Inhomogeneous systems

Stable, center, and unstable spaces for a linear system

$$
A \in M_{n}(\mathbb{C})
$$

Stable, center, and unstable spaces for a linear system
$A \in M_{n}(\mathbb{C})$
generalized eigenspace:

$$
V_{\lambda}=\left\{v \in \mathbb{C}^{n}:(A-\lambda I)^{k} v=0 \text { for some } k>0\right\}
$$

Stable, center, and unstable spaces for a linear system
$A \in M_{n}(\mathbb{C})$
generalized eigenspace:

$$
V_{\lambda}=\left\{v \in \mathbb{C}^{n}:(A-\lambda I)^{k} v=0 \text { for some } k>0\right\}
$$

Jordan form: choose appropriate bases \mathcal{B}_{λ} for each V_{λ} and the basis \mathcal{B} for \mathbb{C}^{n}.

Stable, center, and unstable spaces for a linear system

$A \in M_{n}(\mathbb{C})$
generalized eigenspace:

$$
V_{\lambda}=\left\{v \in \mathbb{C}^{n}:(A-\lambda I)^{k} v=0 \text { for some } k>0\right\}
$$

Jordan form: choose appropriate bases \mathcal{B}_{λ} for each V_{λ} and the basis \mathcal{B} for \mathbb{C}^{n}.
stable, center, and unstable subspaces for A :

$$
\begin{aligned}
& E^{s}=\operatorname{span} \cup_{\lambda: \operatorname{Re}(\lambda)<0} \mathcal{B}_{\lambda} \\
& E^{c}=\operatorname{Span} \cup_{\lambda: \operatorname{Re}(\lambda)=0} \mathcal{B}_{\lambda} \\
& E^{u}=\operatorname{Span} \cup_{\lambda: \operatorname{Re}(\lambda)>0} \mathcal{B}_{\lambda}
\end{aligned}
$$

Stable, center, and unstable spaces for a linear system

$A \in M_{n}(\mathbb{C})$
generalized eigenspace:

$$
V_{\lambda}=\left\{v \in \mathbb{C}^{n}:(A-\lambda I)^{k} v=0 \text { for some } k>0\right\}
$$

Jordan form: choose appropriate bases \mathcal{B}_{λ} for each V_{λ} and the basis \mathcal{B} for \mathbb{C}^{n}.
stable, center, and unstable subspaces for A :

$$
\begin{aligned}
& E^{s}=\operatorname{span} \cup_{\lambda: \operatorname{Re}(\lambda)<0} \mathcal{B}_{\lambda} \\
& E^{c}=\operatorname{Span} \cup_{\lambda: \operatorname{Re}(\lambda)=0} \mathcal{B}_{\lambda} \\
& E^{u}=\operatorname{Span} \cup_{\lambda: \operatorname{Re}(\lambda)>0} \mathcal{B}_{\lambda}
\end{aligned}
$$

$$
\mathbb{C}^{n}=E^{s} \oplus E^{c} \oplus E^{u}
$$

Stable, center, and unstable spaces for a linear system
stable, center, and unstable subspaces for A :

$$
\begin{aligned}
& E^{s}=\operatorname{Span} \cup_{\lambda: \operatorname{Re}(\lambda)<0} \mathcal{B}_{\lambda} \\
& E^{c}=\operatorname{Span} \cup_{\lambda: \operatorname{Re}(\lambda)=0} \mathcal{B}_{\lambda} \\
& E^{u}=\operatorname{Span} \cup_{\lambda: \operatorname{Re}(\lambda)>0} \mathcal{B}_{\lambda}
\end{aligned}
$$

Stable, center, and unstable spaces for a linear system
stable, center, and unstable subspaces for A :

$$
\begin{aligned}
& E^{s}=\operatorname{Span} \cup_{\lambda: \operatorname{Re}(\lambda)<0} \mathcal{B}_{\lambda} \\
& E^{c}=\operatorname{Span} \cup_{\lambda: \operatorname{Re}(\lambda)=0} \mathcal{B}_{\lambda} \\
& E^{u}=\operatorname{Span} \cup_{\lambda: \operatorname{Re}(\lambda)>0} \mathcal{B}_{\lambda}
\end{aligned}
$$

$$
\mathbb{C}^{n}=E^{s} \oplus E^{c} \oplus E^{u}
$$

Stable, center, and unstable spaces for a linear system

stable, center, and unstable subspaces for A :

$$
\begin{aligned}
& E^{s}=\operatorname{Span} \cup_{\lambda: \operatorname{Re}(\lambda)<0} \mathcal{B}_{\lambda} \\
& E^{c}=\operatorname{Span} \cup_{\lambda: \operatorname{Re}(\lambda)=0} \mathcal{B}_{\lambda} \\
& E^{u}=\operatorname{Span} \cup_{\lambda: \operatorname{Re}(\lambda)>0} \mathcal{B}_{\lambda}
\end{aligned}
$$

$$
\mathbb{C}^{n}=E^{s} \oplus E^{c} \oplus E^{u}
$$

Proposition. Each generalized eigenspace, the stable, center, and unstable spaces are invariant under A and under $e^{A t}$ for all $t \in \mathbb{R}$.

Linear systems in \mathbb{R}^{3}

Linear systems in \mathbb{R}^{3}

I. $u, v, w \in \mathbb{R}$:

$$
J=\left(\begin{array}{ccc}
u & 0 & 0 \\
0 & v & 0 \\
0 & 0 & w
\end{array}\right) \quad x(t)=e^{J t} x_{0}=\left(\begin{array}{ccc}
e^{u t} & 0 & 0 \\
0 & e^{v t} & 0 \\
0 & 0 & e^{w t}
\end{array}\right) x_{0} .
$$

Linear systems in \mathbb{R}^{3}

I. $u, v, w \in \mathbb{R}$:
$J=\left(\begin{array}{ccc}u & 0 & 0 \\ 0 & v & 0 \\ 0 & 0 & w\end{array}\right) \quad x(t)=e^{J t} x_{0}=\left(\begin{array}{ccc}e^{u t} & 0 & 0 \\ 0 & e^{v t} & 0 \\ 0 & 0 & e^{w t}\end{array}\right) x_{0}$.
II. $u, v \in \mathbb{R}$:
$J=\left(\begin{array}{ccc}u & 1 & 0 \\ 0 & u & 0 \\ 0 & 0 & v\end{array}\right) \quad x(t)=e^{J t} x_{0}=\left(\begin{array}{ccc}e^{u t} & t e^{u t} & 0 \\ 0 & e^{u t} & 0 \\ 0 & 0 & e^{v t}\end{array}\right) x_{0}$.

Linear systems in \mathbb{R}^{3}

I. $u, v, w \in \mathbb{R}$:
$J=\left(\begin{array}{ccc}u & 0 & 0 \\ 0 & v & 0 \\ 0 & 0 & w\end{array}\right) \quad x(t)=e^{J t} x_{0}=\left(\begin{array}{ccc}e^{u t} & 0 & 0 \\ 0 & e^{v t} & 0 \\ 0 & 0 & e^{w t}\end{array}\right) x_{0}$.
II. $u, v \in \mathbb{R}$:
$J=\left(\begin{array}{ccc}u & 1 & 0 \\ 0 & u & 0 \\ 0 & 0 & v\end{array}\right) \quad x(t)=e^{J t} x_{0}=\left(\begin{array}{ccc}e^{u t} & t e^{u t} & 0 \\ 0 & e^{u t} & 0 \\ 0 & 0 & e^{v t}\end{array}\right) x_{0}$.
III. $u \in \mathbb{R}$:
$J=\left(\begin{array}{lll}u & 1 & 0 \\ 0 & u & 1 \\ 0 & 0 & u\end{array}\right)$
$x(t)=e^{J t} x_{0}=\left(\begin{array}{ccc}e^{u t} & t e^{u t} & t^{2} \\ 0 & e^{u t} \\ 0 & 0 & e^{u t}\end{array}\right) x_{0}^{u t}$.

Linear systems in \mathbb{R}^{3}

I. $u, v, w \in \mathbb{R}$:
$J=\left(\begin{array}{ccc}u & 0 & 0 \\ 0 & v & 0 \\ 0 & 0 & w\end{array}\right) \quad x(t)=e^{J t} x_{0}=\left(\begin{array}{ccc}e^{u t} & 0 & 0 \\ 0 & e^{v t} & 0 \\ 0 & 0 & e^{w t}\end{array}\right) x_{0}$.
II. $u, v \in \mathbb{R}$:
$J=\left(\begin{array}{ccc}u & 1 & 0 \\ 0 & u & 0 \\ 0 & 0 & v\end{array}\right) \quad x(t)=e^{J t} x_{0}=\left(\begin{array}{ccc}e^{u t} & t e^{u t} & 0 \\ 0 & e^{u t} & 0 \\ 0 & 0 & e^{v t}\end{array}\right) x_{0}$.
III. $u \in \mathbb{R}$:
$J=\left(\begin{array}{ccc}u & 1 & 0 \\ 0 & u & 1 \\ 0 & 0 & u\end{array}\right) \quad x(t)=e^{J t} x_{0}=\left(\begin{array}{ccc}e^{u t} & t e^{u t} & \frac{t^{2}}{2} e^{u t} \\ 0 & e^{u t} & t e^{u t} \\ 0 & 0 & e^{u t}\end{array}\right) x_{0}$.
IV. $a, b, u \in \mathbb{R}$ and $b \neq 0$:
$J=\left(\begin{array}{ccc}a & -b & 0 \\ b & a & 0 \\ 0 & 0 & u\end{array}\right) \quad x(t)=e^{J t} x_{0}=\left(\begin{array}{ccc}e^{a t} \cos (b t) & -e^{a t} \sin (b t) & 0 \\ e^{a t} \sin (b t) & e^{a t} \cos (b t) & 0 \\ 0 & 0 & e^{u t}\end{array}\right) x_{0}$.

Non-homogeneous

Proposition. Let $A \in M_{n}(F)$ and consider the system

$$
x^{\prime}(t)=A x(t)+b(t)
$$

where $t \mapsto b(t) \in F^{n}$ is continuous.

Non-homogeneous

Proposition. Let $A \in M_{n}(F)$ and consider the system

$$
x^{\prime}(t)=A x(t)+b(t)
$$

where $t \mapsto b(t) \in F^{n}$ is continuous. The solution with initial condition x_{0} is

$$
x(t)=e^{A t} x_{0}+e^{A t} \int_{s=0}^{t} e^{-A s} b(s) d s
$$

The solution is unique.

