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Homework 3, Problem 1.5
y ′′ − 6yy ′ = 0, y(0) = 2, y ′(0) = 9.

solution: Substitute v = y ′. Then

y ′′ = v ′ = dv
dt = dv

dy
dy
dt = v dv

dy .

Our equation becomes

v dv
dy − 6yv = 0,

Since we want v(0) = y ′(0) = 1 > 0, assume v > 0 and divide
by v :

dv
dy − 6y = 0,

which is separable:∫
dv =

∫
6y dy ⇒ v = 3y2 + c.
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Homework 3, Problem 1.5
v = 3y2 + c

Using the initial conditions y(0) = 2 and v(0) = y ′(0) = 9, we
find c = −3. Therefore,

y ′ = v = 3y2 − 3.
This is a separable equation

1
3

∫ dy
y2 − 1 =

∫
dt ⇒ 1

6

∫ ( 1
y − 1 −

1
y + 1

)
= t + a

⇒ (ln(y − 1)− ln(y + 1)) = 6t + b

⇒ y − 1
y + 1 = αe6t .

The initial condition y(0) = 2 then says α = 1/3. So

y − 1
y + 1 = 1

3e6t ⇒ y = 3 + e6t

3− e6t .
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Homework 3, Problem 2

A ∈ Mn(F ) with i-th row ri .

` = max{|ri | : 1 ≤ i ≤ n}

Prove ‖A‖ ≤ `
√

n.

Solution: Let x ∈ F n with |x | ≤ 1. By Cauchy-Schwarz,

|Ax |2 =
n∑

i=1
|ri · x |2 ≤

n∑
i=1
|ri |2|x |2 ≤

n∑
i=1
|ri |2 ≤

n∑
i=1

`2 = `2n.

Therefore, |Ax | ≤ `
√

n for all |x | ≤ 1. It follows that

‖A‖ = max
|x |≤1

|Ax | ≤ `
√

n.
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Outline

1. Review of diagonalization
2. Jordan form



Jordan matrix



2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 4 1 0 0 0 0
0 0 0 4 1 0 0 0
0 0 0 0 4 0 0 0
0 0 0 0 0 i 1 0
0 0 0 0 0 0 i 0
0 0 0 0 0 0 0 2 + 3i





Jordan form

Theorem. Let A ∈ Mn(C).

Then there exists an invertible
matrix P ∈ Mn(C) such that P−1AP = J where J is a Jordan
matrix. The matrix J is called the Jordan form for A. It is unique
up to a permutation of the Jordan blocks.

The diagonal entries of J are exactly the eigenvalues of A repeated
according to their algebraic multiplicities.

The number of blocks having a particular eigenvalue λ along the
diagonal is the geometric multiplicity of λ (i.e., dim(A− λIn)).
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Real Jordan form



λ 1 0 0 0 0
0 λ 1 0 0 0
0 0 λ 0 0 0
0 0 0 λ̄ 1 0
0 0 0 0 λ̄ 1
0 0 0 0 0 λ̄



 



a −b 1 0 0 0
b a 0 1 0 0
0 0 a −b 1 0
0 0 b a 0 1
0 0 0 0 a −b
0 0 0 0 b a





Real Jordan form



λ 1 0 0 0 0
0 λ 1 0 0 0
0 0 λ 0 0 0
0 0 0 λ̄ 1 0
0 0 0 0 λ̄ 1
0 0 0 0 0 λ̄


 



a −b 1 0 0 0
b a 0 1 0 0
0 0 a −b 1 0
0 0 b a 0 1
0 0 0 0 a −b
0 0 0 0 b a





Real Jordan form

If A ∈ Mn(R), there exists an invertible P ∈ Mn(R) such
that P−1AP = J where J consists of Jordan blocks—the usual
ones for real eigenvalues, and these modified block matrices for
conjugate pairs of complex eigenvalues.

The form is unique up to
permutation of the blocks and swaps(

a −b
b a

)
←→

(
a b
−b a

)
.
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Real Jordan form



4 0 0 0 0 0 0 0 0 0
0 4 1 0 0 0 0 0 0 0
0 0 4 1 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0 0
0 0 0 0 3 −2 0 0 0 0
0 0 0 0 2 3 0 0 0 0
0 0 0 0 0 0 3 −2 1 0
0 0 0 0 0 0 2 3 0 1
0 0 0 0 0 0 0 0 3 −2
0 0 0 0 0 0 0 0 2 3




