Math 322

February 16, 2022

Homework 3, Problem 1.5

$$
y^{\prime \prime}-6 y y^{\prime}=0, \quad y(0)=2, \quad y^{\prime}(0)=9 .
$$

Homework 3, Problem 1.5

$y^{\prime \prime}-6 y y^{\prime}=0, \quad y(0)=2, y^{\prime}(0)=9$.
SOLUTION: Substitute $v=y^{\prime}$. Then

$$
y^{\prime \prime}=v^{\prime}=\frac{d v}{d t}=\frac{d v}{d y} \frac{d y}{d t}=v \frac{d v}{d y}
$$

Homework 3, Problem 1.5

$y^{\prime \prime}-6 y y^{\prime}=0, \quad y(0)=2, y^{\prime}(0)=9$.
SOLUTION: Substitute $v=y^{\prime}$. Then

$$
y^{\prime \prime}=v^{\prime}=\frac{d v}{d t}=\frac{d v}{d y} \frac{d y}{d t}=v \frac{d v}{d y}
$$

Our equation becomes

$$
v \frac{d v}{d y}-6 y v=0
$$

Homework 3, Problem 1.5

$y^{\prime \prime}-6 y y^{\prime}=0, \quad y(0)=2, y^{\prime}(0)=9$.
SOLUTION: Substitute $v=y^{\prime}$. Then

$$
y^{\prime \prime}=v^{\prime}=\frac{d v}{d t}=\frac{d v}{d y} \frac{d y}{d t}=v \frac{d v}{d y}
$$

Our equation becomes

$$
v \frac{d v}{d y}-6 y v=0
$$

Since we want $v(0)=y^{\prime}(0)=1>0$, assume $v>0$ and divide by v :

$$
\frac{d v}{d y}-6 y=0
$$

Homework 3, Problem 1.5

$y^{\prime \prime}-6 y y^{\prime}=0, \quad y(0)=2, y^{\prime}(0)=9$.
SOLUTION: Substitute $v=y^{\prime}$. Then

$$
y^{\prime \prime}=v^{\prime}=\frac{d v}{d t}=\frac{d v}{d y} \frac{d y}{d t}=v \frac{d v}{d y}
$$

Our equation becomes

$$
v \frac{d v}{d y}-6 y v=0
$$

Since we want $v(0)=y^{\prime}(0)=1>0$, assume $v>0$ and divide by v :

$$
\frac{d v}{d y}-6 y=0
$$

which is separable:

$$
\int d v=\int 6 y d y \Rightarrow v=3 y^{2}+c
$$

Homework 3, Problem 1.5

$$
v=3 y^{2}+c
$$

Homework 3, Problem 1.5

$$
v=3 y^{2}+c
$$

Using the initial conditions $y(0)=2$ and $v(0)=y^{\prime}(0)=9$, we find $c=-3$. Therefore,

$$
y^{\prime}=v=3 y^{2}-3
$$

Homework 3, Problem 1.5

$$
v=3 y^{2}+c
$$

Using the initial conditions $y(0)=2$ and $v(0)=y^{\prime}(0)=9$, we find $c=-3$. Therefore,

$$
y^{\prime}=v=3 y^{2}-3 .
$$

This is a separable equation

$$
\begin{aligned}
\frac{1}{3} \int \frac{d y}{y^{2}-1}=\int d t & \Rightarrow \frac{1}{6} \int\left(\frac{1}{y-1}-\frac{1}{y+1}\right)=t+a \\
& \Rightarrow(\ln (y-1)-\ln (y+1))=6 t+b \\
& \Rightarrow \frac{y-1}{y+1}=\alpha e^{6 t} .
\end{aligned}
$$

Homework 3, Problem 1.5

$$
v=3 y^{2}+c
$$

Using the initial conditions $y(0)=2$ and $v(0)=y^{\prime}(0)=9$, we find $c=-3$. Therefore,

$$
y^{\prime}=v=3 y^{2}-3
$$

This is a separable equation

$$
\begin{aligned}
\frac{1}{3} \int \frac{d y}{y^{2}-1}=\int d t & \Rightarrow \frac{1}{6} \int\left(\frac{1}{y-1}-\frac{1}{y+1}\right)=t+a \\
& \Rightarrow(\ln (y-1)-\ln (y+1))=6 t+b \\
& \Rightarrow \frac{y-1}{y+1}=\alpha e^{6 t} .
\end{aligned}
$$

The initial condition $y(0)=2$ then says $\alpha=1 / 3$. So

$$
\frac{y-1}{y+1}=\frac{1}{3} e^{6 t} \Rightarrow y=\frac{3+e^{6 t}}{3-e^{6 t}}
$$

Homework 3, Problem 2

$A \in M_{n}(F)$ with i-th row r_{i}.

Homework 3, Problem 2

$A \in M_{n}(F)$ with i-th row r_{i}.
$\ell=\max \left\{\left|r_{i}\right|: 1 \leq i \leq n\right\}$

Homework 3, Problem 2

$A \in M_{n}(F)$ with i-th row r_{i}.
$\ell=\max \left\{\left|r_{i}\right|: 1 \leq i \leq n\right\}$
Prove $\|A\| \leq \ell \sqrt{n}$.

Homework 3, Problem 2

$A \in M_{n}(F)$ with i-th row r_{i}.
$\ell=\max \left\{\left|r_{i}\right|: 1 \leq i \leq n\right\}$
Prove $\|A\| \leq \ell \sqrt{n}$.
Solution: Let $x \in F^{n}$ with $|x| \leq 1$.

Homework 3, Problem 2

$A \in M_{n}(F)$ with i-th row r_{i}.
$\ell=\max \left\{\left|r_{i}\right|: 1 \leq i \leq n\right\}$
Prove $\|A\| \leq \ell \sqrt{n}$.
Solution: Let $x \in F^{n}$ with $|x| \leq 1$. By Cauchy-Schwarz,

$$
|A x|^{2}=\sum_{i=1}^{n}\left|r_{i} \cdot x\right|^{2}
$$

Homework 3, Problem 2

$A \in M_{n}(F)$ with i-th row r_{i}.
$\ell=\max \left\{\left|r_{i}\right|: 1 \leq i \leq n\right\}$
Prove $\|A\| \leq \ell \sqrt{n}$.
Solution: Let $x \in F^{n}$ with $|x| \leq 1$. By Cauchy-Schwarz,

$$
|A x|^{2}=\sum_{i=1}^{n}\left|r_{i} \cdot x\right|^{2} \leq \sum_{i=1}^{n}\left|r_{i}\right|^{2}|x|^{2}
$$

Homework 3, Problem 2

$A \in M_{n}(F)$ with i-th row r_{i}.
$\ell=\max \left\{\left|r_{i}\right|: 1 \leq i \leq n\right\}$
Prove $\|A\| \leq \ell \sqrt{n}$.
Solution: Let $x \in F^{n}$ with $|x| \leq 1$. By Cauchy-Schwarz,

$$
|A x|^{2}=\sum_{i=1}^{n}\left|r_{i} \cdot x\right|^{2} \leq \sum_{i=1}^{n}\left|r_{i}\right|^{2}|x|^{2} \leq \sum_{i=1}^{n}\left|r_{i}\right|^{2}
$$

Homework 3, Problem 2

$A \in M_{n}(F)$ with i-th row r_{i}.
$\ell=\max \left\{\left|r_{i}\right|: 1 \leq i \leq n\right\}$
Prove $\|A\| \leq \ell \sqrt{n}$.
Solution: Let $x \in F^{n}$ with $|x| \leq 1$. By Cauchy-Schwarz,

$$
|A x|^{2}=\sum_{i=1}^{n}\left|r_{i} \cdot x\right|^{2} \leq \sum_{i=1}^{n}\left|r_{i}\right|^{2}|x|^{2} \leq \sum_{i=1}^{n}\left|r_{i}\right|^{2} \leq \sum_{i=1}^{n} \ell^{2}
$$

Homework 3, Problem 2

$A \in M_{n}(F)$ with i-th row r_{i}.
$\ell=\max \left\{\left|r_{i}\right|: 1 \leq i \leq n\right\}$
Prove $\|A\| \leq \ell \sqrt{n}$.
Solution: Let $x \in F^{n}$ with $|x| \leq 1$. By Cauchy-Schwarz,

$$
|A x|^{2}=\sum_{i=1}^{n}\left|r_{i} \cdot x\right|^{2} \leq \sum_{i=1}^{n}\left|r_{i}\right|^{2}|x|^{2} \leq \sum_{i=1}^{n}\left|r_{i}\right|^{2} \leq \sum_{i=1}^{n} \ell^{2}=\ell^{2} n .
$$

Homework 3, Problem 2

$A \in M_{n}(F)$ with i-th row r_{i}.
$\ell=\max \left\{\left|r_{i}\right|: 1 \leq i \leq n\right\}$
Prove $\|A\| \leq \ell \sqrt{n}$.
Solution: Let $x \in F^{n}$ with $|x| \leq 1$. By Cauchy-Schwarz,

$$
|A x|^{2}=\sum_{i=1}^{n}\left|r_{i} \cdot x\right|^{2} \leq \sum_{i=1}^{n}\left|r_{i}\right|^{2}|x|^{2} \leq \sum_{i=1}^{n}\left|r_{i}\right|^{2} \leq \sum_{i=1}^{n} \ell^{2}=\ell^{2} n .
$$

Therefore, $|A x| \leq \ell \sqrt{n}$ for all $|x| \leq 1$.

Homework 3, Problem 2

$A \in M_{n}(F)$ with i-th row r_{i}.
$\ell=\max \left\{\left|r_{i}\right|: 1 \leq i \leq n\right\}$
Prove $\|A\| \leq \ell \sqrt{n}$.
Solution: Let $x \in F^{n}$ with $|x| \leq 1$. By Cauchy-Schwarz,

$$
|A x|^{2}=\sum_{i=1}^{n}\left|r_{i} \cdot x\right|^{2} \leq \sum_{i=1}^{n}\left|r_{i}\right|^{2}|x|^{2} \leq \sum_{i=1}^{n}\left|r_{i}\right|^{2} \leq \sum_{i=1}^{n} \ell^{2}=\ell^{2} n .
$$

Therefore, $|A x| \leq \ell \sqrt{n}$ for all $|x| \leq 1$. It follows that

$$
\|A\|=\max _{|x| \leq 1}|A x| \leq \ell \sqrt{n}
$$

Outline

1. Review of diagonalization
2. Jordan form

Jordan matrix

$$
\left(\begin{array}{cccccccc}
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & i & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & i & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 2+3 i
\end{array}\right)
$$

Jordan form

Theorem. Let $A \in M_{n}(\mathbb{C})$.

Jordan form

Theorem. Let $A \in M_{n}(\mathbb{C})$. Then there exists an invertible matrix $P \in M_{n}(\mathbb{C})$ such that $P^{-1} A P=J$ where J is a Jordan matrix.

Jordan form

Theorem. Let $A \in M_{n}(\mathbb{C})$. Then there exists an invertible matrix $P \in M_{n}(\mathbb{C})$ such that $P^{-1} A P=J$ where J is a Jordan matrix. The matrix J is called the Jordan form for A.

Jordan form

Theorem. Let $A \in M_{n}(\mathbb{C})$. Then there exists an invertible matrix $P \in M_{n}(\mathbb{C})$ such that $P^{-1} A P=J$ where J is a Jordan matrix. The matrix J is called the Jordan form for A. It is unique up to a permutation of the Jordan blocks.

Jordan form

Theorem. Let $A \in M_{n}(\mathbb{C})$. Then there exists an invertible matrix $P \in M_{n}(\mathbb{C})$ such that $P^{-1} A P=J$ where J is a Jordan matrix. The matrix J is called the Jordan form for A. It is unique up to a permutation of the Jordan blocks.

The diagonal entries of J are exactly the eigenvalues of A repeated according to their algebraic multiplicities.

Jordan form

Theorem. Let $A \in M_{n}(\mathbb{C})$. Then there exists an invertible matrix $P \in M_{n}(\mathbb{C})$ such that $P^{-1} A P=J$ where J is a Jordan matrix. The matrix J is called the Jordan form for A. It is unique up to a permutation of the Jordan blocks.

The diagonal entries of J are exactly the eigenvalues of A repeated according to their algebraic multiplicities.

The number of blocks having a particular eigenvalue λ along the diagonal is the geometric multiplicity of λ (i.e., $\operatorname{dim}\left(A-\lambda I_{n}\right)$).

Real Jordan form

$$
\left(\begin{array}{llllll}
\lambda & 1 & 0 & 0 & 0 & 0 \\
0 & \lambda & 1 & 0 & 0 & 0 \\
0 & 0 & \lambda & 0 & 0 & 0 \\
0 & 0 & 0 & \bar{\lambda} & 1 & 0 \\
0 & 0 & 0 & 0 & \bar{\lambda} & 1 \\
0 & 0 & 0 & 0 & 0 & \bar{\lambda}
\end{array}\right)
$$

Real Jordan form

$$
\left(\begin{array}{cccccc}
\lambda & 1 & 0 & 0 & 0 & 0 \\
0 & \lambda & 1 & 0 & 0 & 0 \\
0 & 0 & \lambda & 0 & 0 & 0 \\
0 & 0 & 0 & \bar{\lambda} & 1 & 0 \\
0 & 0 & 0 & 0 & \bar{\lambda} & 1 \\
0 & 0 & 0 & 0 & 0 & \bar{\lambda}
\end{array}\right) \rightsquigarrow\left(\begin{array}{cccccc}
a & -b & 1 & 0 & 0 & 0 \\
b & a & 0 & 1 & 0 & 0 \\
0 & 0 & a & -b & 1 & 0 \\
0 & 0 & b & a & 0 & 1 \\
0 & 0 & 0 & 0 & a & -b \\
0 & 0 & 0 & 0 & b & a
\end{array}\right)
$$

Real Jordan form

If $A \in M_{n}(\mathbb{R})$, there exists an invertible $P \in M_{n}(\mathbb{R})$ such that $P^{-1} A P=J$ where J consists of Jordan blocks-the usual ones for real eigenvalues, and these modified block matrices for conjugate pairs of complex eigenvalues.

Real Jordan form

If $A \in M_{n}(\mathbb{R})$, there exists an invertible $P \in M_{n}(\mathbb{R})$ such that $P^{-1} A P=J$ where J consists of Jordan blocks-the usual ones for real eigenvalues, and these modified block matrices for conjugate pairs of complex eigenvalues. The form is unique up to permutation of the blocks and swaps

$$
\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right) \longleftrightarrow\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)
$$

Real Jordan form

$$
\left(\begin{array}{cccccccccc}
4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 3 & -2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 3 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 3 & -2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & 3 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 3
\end{array}\right)
$$

