Math 322

February 14, 2022

Linear systems in \mathbb{R}^{2}
Let $A \in M_{2}(\mathbb{R})$.

Linear systems in \mathbb{R}^{2}

Let $A \in M_{2}(\mathbb{R})$. Exactly one of the following holds:

Linear systems in \mathbb{R}^{2}

Let $A \in M_{2}(\mathbb{R})$. Exactly one of the following holds:

1. A is diagonalizable over \mathbb{R} with eigenvalues u and v (not necessarily distinct):

$$
\left(\begin{array}{ll}
u & 0 \\
0 & v
\end{array}\right)
$$

Linear systems in \mathbb{R}^{2}

Let $A \in M_{2}(\mathbb{R})$. Exactly one of the following holds:

1. A is diagonalizable over \mathbb{R} with eigenvalues u and v (not necessarily distinct):

$$
\left(\begin{array}{ll}
u & 0 \\
0 & v
\end{array}\right)
$$

2. A is not diagonalizable over \mathbb{R}, but has a real eigenvalue u (necessarily of multiplicity 2):

$$
\left(\begin{array}{ll}
u & 1 \\
0 & u
\end{array}\right) .
$$

Linear systems in \mathbb{R}^{2}

Let $A \in M_{2}(\mathbb{R})$. Exactly one of the following holds:

1. A is diagonalizable over \mathbb{R} with eigenvalues u and v (not necessarily distinct):

$$
\left(\begin{array}{ll}
u & 0 \\
0 & v
\end{array}\right)
$$

2. A is not diagonalizable over \mathbb{R}, but has a real eigenvalue u (necessarily of multiplicity 2):

$$
\left(\begin{array}{ll}
u & 1 \\
0 & u
\end{array}\right) .
$$

3. A has a pair of conjugate complex roots $a \pm b i$ with $b \neq 0$:

$$
\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)
$$

Determinant and trace

Lemma. Let $A \in M_{n}(F)$ with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Then
(i) $\operatorname{trace}(A):=\sum_{i=1}^{n} A_{i i}=\sum_{i=1}^{n} \lambda_{i}$ and $\operatorname{det}(A)=\prod_{i=1}^{n} \lambda_{i}$.

Determinant and trace

Lemma. Let $A \in M_{n}(F)$ with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Then
(i) $\operatorname{trace}(A):=\sum_{i=1}^{n} A_{i i}=\sum_{i=1}^{n} \lambda_{i}$ and $\operatorname{det}(A)=\prod_{i=1}^{n} \lambda_{i}$.
(ii) Consider the characteristic polynomial of A :

$$
p(x)=\operatorname{det}\left(A-x I_{n}\right) .
$$

Then the coefficient of x^{n-1} in $p(x)$ is $(-1)^{n-1} \operatorname{trace}(A)$ and the constant term of $p(x)$ is $\operatorname{det}(A)$.

Moduli space for systems in \mathbb{R}^{2}

