Math 322

February 9, 2022

Announcements

- Job talks
- Status of the Stats program: today at 4:10 pm in Lib 389
- Questions?

HW 2, problem 2: $2 t y y^{\prime}=t^{2}+y^{2}, \quad y(1)=0$

HW 2, problem 2: 2 ty $y^{\prime}=t^{2}+y^{2}, \quad y(1)=0$

Rewrite: $y^{\prime}=\frac{t^{2}+y^{2}}{2 t y}=\frac{1}{2}\left(\frac{t}{y}+\frac{y}{t}\right)$

HW 2, problem 2: 2 ty $y^{\prime}=t^{2}+y^{2}, \quad y(1)=0$

Rewrite: $y^{\prime}=\frac{t^{2}+y^{2}}{2 t y}=\frac{1}{2}\left(\frac{t}{y}+\frac{y}{t}\right)$
Substitute $v=\frac{y}{t}: \quad v+t v^{\prime}=\frac{1}{2}\left(\frac{1}{v}+v\right)$

HW 2, problem 2: 2 ty $y^{\prime}=t^{2}+y^{2}, \quad y(1)=0$

Rewrite: $y^{\prime}=\frac{t^{2}+y^{2}}{2 t y}=\frac{1}{2}\left(\frac{t}{y}+\frac{y}{t}\right)$
Substitute $v=\frac{y}{t}: \quad v+t v^{\prime}=\frac{1}{2}\left(\frac{1}{v}+v\right)$
Separable: $\quad \frac{2 v}{1-v^{2}} v^{\prime}=\frac{1}{t}$

HW 2, problem 2: $2 t y y^{\prime}=t^{2}+y^{2}, \quad y(1)=0$

Rewrite: $y^{\prime}=\frac{t^{2}+y^{2}}{2 t y}=\frac{1}{2}\left(\frac{t}{y}+\frac{y}{t}\right)$
Substitute $v=\frac{y}{t}: \quad v+t v^{\prime}=\frac{1}{2}\left(\frac{1}{v}+v\right)$
Separable: $\quad \frac{2 v}{1-v^{2}} v^{\prime}=\frac{1}{t}$
Integrate using the fact that $t \approx 1$ and $v \approx 0$:

$$
-\ln \left(1-v^{2}\right)=\ln (t)+c \quad \Rightarrow \quad 1-v^{2}=\frac{a}{t} \quad \Rightarrow \quad 1-\frac{y^{2}}{t^{2}}=\frac{a}{t}
$$

HW 2, problem 2: $\quad 2 t y y^{\prime}=t^{2}+y^{2}, \quad y(1)=0$

Rewrite: $y^{\prime}=\frac{t^{2}+y^{2}}{2 t y}=\frac{1}{2}\left(\frac{t}{y}+\frac{y}{t}\right)$
Substitute $v=\frac{y}{t}: \quad v+t v^{\prime}=\frac{1}{2}\left(\frac{1}{v}+v\right)$
Separable: $\quad \frac{2 v}{1-v^{2}} v^{\prime}=\frac{1}{t}$
Integrate using the fact that $t \approx 1$ and $v \approx 0$:
$-\ln \left(1-v^{2}\right)=\ln (t)+c \quad \Rightarrow \quad 1-v^{2}=\frac{a}{t} \quad \Rightarrow \quad 1-\frac{y^{2}}{t^{2}}=\frac{a}{t}$

Use initial condition and solve for $y^{2}: \quad y^{2}=t^{2}-t=t(t-1)$

HW 2, problem 2: 2 ty $y^{\prime}=t^{2}+y^{2}, \quad y(1)=0$
Implicit solution: $\quad y^{2}=t^{2}-t=t(t-1)$

HW 2, problem 2: 2 ty $y^{\prime}=t^{2}+y^{2}, \quad y(1)=0$

Implicit solution: $\quad y^{2}=t^{2}-t=t(t-1)$
Note that there is no solution when for $0<t<1$.

HW 2, problem 2: 2 ty $y^{\prime}=t^{2}+y^{2}, \quad y(1)=0$

Implicit solution: $\quad y^{2}=t^{2}-t=t(t-1)$
Note that there is no solution when for $0<t<1$.
Two possible solutions for $t \geq 1: \quad y= \pm \sqrt{t^{2}-t}$.

HW 2, problem 2: 2 ty $y^{\prime}=t^{2}+y^{2}, \quad y(1)=0$
Implicit solution: $\quad y^{2}=t^{2}-t=t(t-1)$
Note that there is no solution when for $0<t<1$.
Two possible solutions for $t \geq 1: \quad y= \pm \sqrt{t^{2}-t}$.

What is the speed of each solution when $t=1$?

The Fundamental Theorem for Linear Systems (p. 17)

The Fundamental Theorem for Linear Systems (p. 17).
Let $A \in M_{n}(F)$, and let $x_{0} \in F^{n}$. The initial value problem

$$
\begin{aligned}
x^{\prime} & =A x \\
x(0) & =x_{0}
\end{aligned}
$$

has the unique solution

$$
x=e^{A t} x_{0}
$$

The Fundamental Theorem for Linear Systems (p. 17)

The Fundamental Theorem for Linear Systems (p. 17).
Let $A \in M_{n}(F)$, and let $x_{0} \in F^{n}$. The initial value problem

$$
\begin{aligned}
x^{\prime} & =A x \\
x(0) & =x_{0}
\end{aligned}
$$

has the unique solution

$$
x=e^{A t} x_{0} .
$$

Theorem. For all $A \in M_{n}(F)$ and $t_{0}>0$, the function $\mathbb{R} \rightarrow M_{n}(F)$ given by

$$
t \mapsto \sum_{k \geq 0} \frac{A^{k} t^{k}}{k!}=: e^{A t}
$$

converges absolutely and uniformly for $t \in\left[-t_{0}, t_{0}\right]$.

Cauchy sequences

Definition. A sequence $\left(v_{k}\right)$ in a normed vector space $(V,\| \|)$ is a Cauchy sequence if for all $\varepsilon>0$ there exists $N \in \mathbb{R}$ such that for all $m, n>N$, we have

$$
\left\|v_{n}-v_{m}\right\|<\varepsilon
$$

Cauchy sequences

Definition. A sequence $\left(v_{k}\right)$ in a normed vector space $(V,\| \|)$ is a Cauchy sequence if for all $\varepsilon>0$ there exists $N \in \mathbb{R}$ such that for all $m, n>N$, we have

$$
\left\|v_{n}-v_{m}\right\|<\varepsilon
$$

Easy result: every convergent sequence is Cauchy.

Cauchy sequences

Definition. A sequence $\left(v_{k}\right)$ in a normed vector space $(V,\| \|)$ is a Cauchy sequence if for all $\varepsilon>0$ there exists $N \in \mathbb{R}$ such that for all $m, n>N$, we have

$$
\left\|v_{n}-v_{m}\right\|<\varepsilon
$$

Easy result: every convergent sequence is Cauchy.
Theorem from analysis: if V is a finite-dimensional normed vector space, then V is complete: a sequence in V converges if and only if it is Cauchy.

Weierstrass M-test

Lemma. Let V and W be normed vector spaces with V finite-dimensional.

Weierstrass M-test

Lemma. Let V and W be normed vector spaces with V finite-dimensional. For each $k \geq 0$, let $f_{k}: W \rightarrow V$ be a function.

Weierstrass M-test

Lemma. Let V and W be normed vector spaces with V finite-dimensional. For each $k \geq 0$, let $f_{k}: W \rightarrow V$ be a function. Let $C \subseteq W$,

Weierstrass M-test

Lemma. Let V and W be normed vector spaces with V finite-dimensional. For each $k \geq 0$, let $f_{k}: W \rightarrow V$ be a function. Let $C \subseteq W$, and suppose there exists a sequence $\left(M_{k}\right)_{k}$ of positive numbers such that

$$
\left\|f_{k}(x)\right\| \leq M_{k}
$$

for all $x \in C$ and for all k.

Weierstrass M-test

Lemma. Let V and W be normed vector spaces with V finite-dimensional. For each $k \geq 0$, let $f_{k}: W \rightarrow V$ be a function. Let $C \subseteq W$, and suppose there exists a sequence $\left(M_{k}\right)_{k}$ of positive numbers such that

$$
\left\|f_{k}(x)\right\| \leq M_{k}
$$

for all $x \in C$ and for all k. Suppose further that $\sum_{k} M_{k}$ converges.

Weierstrass M-test

Lemma. Let V and W be normed vector spaces with V finite-dimensional. For each $k \geq 0$, let $f_{k}: W \rightarrow V$ be a function. Let $C \subseteq W$, and suppose there exists a sequence $\left(M_{k}\right)_{k}$ of positive numbers such that

$$
\left\|f_{k}(x)\right\| \leq M_{k}
$$

for all $x \in C$ and for all k. Suppose further that $\sum_{k} M_{k}$ converges. Then $\sum_{k} f_{k}$ is absolutely and uniformly convergent on C.

Weierstrass M-test

Lemma. Let V and W be normed vector spaces with V finite-dimensional. For each $k \geq 0$, let $f_{k}: W \rightarrow V$ be a function. Let $C \subseteq W$, and suppose there exists a sequence $\left(M_{k}\right)_{k}$ of positive numbers such that

$$
\left\|f_{k}(x)\right\| \leq M_{k}
$$

for all $x \in C$ and for all k. Suppose further that $\sum_{k} M_{k}$ converges. Then $\sum_{k} f_{k}$ is absolutely and uniformly convergent on C.

Proof. On board.

Convergence of exponential function

Theorem. For all $A \in M_{n}(F)$ and $t_{0}>0$, the function $\mathbb{R} \rightarrow M_{n}(F)$ given by

$$
t \mapsto \sum_{k \geq 0} \frac{A^{k} t^{k}}{k!}=: e^{A t}
$$

converges absolutely and uniformly for $t \in\left[-t_{0}, t_{0}\right]$.

Convergence of exponential function

Theorem. For all $A \in M_{n}(F)$ and $t_{0}>0$, the function $\mathbb{R} \rightarrow M_{n}(F)$ given by

$$
t \mapsto \sum_{k \geq 0} \frac{A^{k} t^{k}}{k!}=: e^{A t}
$$

converges absolutely and uniformly for $t \in\left[-t_{0}, t_{0}\right]$.
Proof. On board.

The matrix exponential

Definition. Let $A \in M_{n}(F)$ and $t \in \mathbb{R}$. Then

$$
e^{A t}:=\sum_{k \geq 0} \frac{A^{k} t^{k}}{k!}
$$

The matrix exponential

Definition. Let $A \in M_{n}(F)$ and $t \in \mathbb{R}$. Then

$$
e^{A t}:=\sum_{k \geq 0} \frac{A^{k} t^{k}}{k!}
$$

First properties:

The matrix exponential

Definition. Let $A \in M_{n}(F)$ and $t \in \mathbb{R}$. Then

$$
e^{A t}:=\sum_{k \geq 0} \frac{A^{k} t^{k}}{k!}
$$

First properties:

1. $\left\|e^{A t}\right\| \leq e^{\|A\|| | t \mid}$.

The matrix exponential

Definition. Let $A \in M_{n}(F)$ and $t \in \mathbb{R}$. Then

$$
e^{A t}:=\sum_{k \geq 0} \frac{A^{k} t^{k}}{k!}
$$

First properties:

$$
\begin{aligned}
& \text { 1. }\left\|e^{A t}\right\| \leq e^{\|A\| t \mid} . \\
& \text { 2. } e^{P^{-1} A P}=P^{-1} e^{A} P .
\end{aligned}
$$

The matrix exponential

Definition. Let $A \in M_{n}(F)$ and $t \in \mathbb{R}$. Then

$$
e^{A t}:=\sum_{k \geq 0} \frac{A^{k} t^{k}}{k!}
$$

First properties:

1. $\left\|e^{A t}\right\| \leq e^{\|A\|| | t \mid}$.
2. $e^{P^{-1} A P}=P^{-1} e^{A} P$.
3. If A and B commute, then $e^{(A+B)}=e^{A} e^{B}$.

The matrix exponential

Definition. Let $A \in M_{n}(F)$ and $t \in \mathbb{R}$. Then

$$
e^{A t}:=\sum_{k \geq 0} \frac{A^{k} t^{k}}{k!}
$$

First properties:

1. $\left\|e^{A t}\right\| \leq e^{\|A\|| | t \mid}$.
2. $e^{P^{-1} A P}=P^{-1} e^{A} P$.
3. If A and B commute, then $e^{(A+B)}=e^{A} e^{B}$.
4. $e^{-A}=\left(e^{A}\right)^{-1}$.

Example

$$
A=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)
$$

Example

$$
A=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)
$$

Show that $e^{A+B} \neq e^{A} e^{B}$. (Note that $A B \neq B A$.)

