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Math 322

February 9, 2022



Announcements

I Job talks
I Status of the Stats program: today at 4:10 pm in Lib 389
I Questions?



HW 2, problem 2: 2ty y ′ = t2 + y 2, y(1) = 0

Rewrite: y ′ = t2 + y2

2ty = 1
2

( t
y + y

t

)

Substitute v = y
t : v + tv ′ = 1

2

(1
v + v

)

Separable: 2v
1− v2 v ′ = 1

t

Integrate using the fact that t ≈ 1 and v ≈ 0:

− ln(1− v2) = ln(t) + c ⇒ 1− v2 = a
t ⇒ 1− y2

t2 = a
t

Use initial condition and solve for y2: y2 = t2 − t = t(t − 1)
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HW 2, problem 2: 2ty y ′ = t2 + y 2, y(1) = 0

Implicit solution: y2 = t2 − t = t(t − 1)

Note that there is no solution when for 0 < t < 1.

Two possible solutions for t ≥ 1: y = ±
√

t2 − t.

What is the speed of each solution when t = 1?
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The Fundamental Theorem for Linear Systems (p. 17)

The Fundamental Theorem for Linear Systems (p. 17).
Let A ∈ Mn(F ), and let x0 ∈ F n. The initial value problem

x ′ = Ax
x(0) = x0

has the unique solution
x = eAtx0.

Theorem. For all A ∈ Mn(F ) and t0 > 0, the
function R→ Mn(F ) given by

t 7→
∑
k≥0

Aktk

k! =: eAt

converges absolutely and uniformly for t ∈ [−t0, t0].



The Fundamental Theorem for Linear Systems (p. 17)

The Fundamental Theorem for Linear Systems (p. 17).
Let A ∈ Mn(F ), and let x0 ∈ F n. The initial value problem

x ′ = Ax
x(0) = x0

has the unique solution
x = eAtx0.

Theorem. For all A ∈ Mn(F ) and t0 > 0, the
function R→ Mn(F ) given by

t 7→
∑
k≥0

Aktk

k! =: eAt

converges absolutely and uniformly for t ∈ [−t0, t0].



Cauchy sequences

Definition. A sequence (vk) in a normed vector space (V , ‖ ‖) is a
Cauchy sequence if for all ε > 0 there exists N ∈ R such that for
all m, n > N, we have

‖vn − vm‖ < ε.

Easy result: every convergent sequence is Cauchy.

Theorem from analysis: if V is a finite-dimensional normed vector
space, then V is complete: a sequence in V converges if and only
if it is Cauchy.
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Weierstrass M-test

Lemma. Let V and W be normed vector spaces with V
finite-dimensional.

For each k ≥ 0, let fk : W → V be a function.
Let C ⊆W , and suppose there exists a sequence (Mk)k of positive
numbers such that

‖fk(x)‖ ≤ Mk

for all x ∈ C and for all k. Suppose further that
∑

k Mk converges.
Then

∑
k fk is absolutely and uniformly convergent on C .

Proof. On board.
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Convergence of exponential function

Theorem. For all A ∈ Mn(F ) and t0 > 0, the
function R→ Mn(F ) given by
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∑
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The matrix exponential

Definition. Let A ∈ Mn(F ) and t ∈ R. Then

eAt :=
∑
k≥0

Aktk

k! .

First properties:

1. ‖eAt‖ ≤ e‖A‖|t|.

2. eP−1AP = P−1eAP.

3. If A and B commute, then e(A+B) = eAeB.

4. e−A =
(
eA
)−1

.
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Example

A =
(

0 1
0 0

)
and B =

(
1 0
0 2

)

Show that eA+B 6= eAeB. (Note that AB 6= BA.)
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