Math 322

February 7, 2022

Announcements

- Job talks

Announcements

- Job talks
- questions?

The Fundamental Theorem for Linear Systems (p. 17)

Let $F=\mathbb{R}$ or \mathbb{C}.
Theorem. Let $A \in M_{n}(F)$, and let $x_{0} \in F^{n}$. The initial value problem

$$
\begin{aligned}
x^{\prime} & =A x \\
x(0) & =x_{0}
\end{aligned}
$$

has the unique solution

$$
x=e^{A t} x_{0} .
$$

Normed vector space

Definition. A norm on a vector space V over F is a mapping

$$
\|\|: V \rightarrow \mathbb{R}
$$

satisfying

Normed vector space

Definition. A norm on a vector space V over F is a mapping

$$
\|\|: V \rightarrow \mathbb{R}
$$

satisfying

1. (positive definite) $\|v\| \geq 0$ for all $v \in V$, and $\|v\|=0$ if and only if $v=0$.

Normed vector space

Definition. A norm on a vector space V over F is a mapping

$$
\|\|: V \rightarrow \mathbb{R}
$$

satisfying

1. (positive definite) $\|v\| \geq 0$ for all $v \in V$, and $\|v\|=0$ if and only if $v=0$.
2. (absolute homogeneity) $\|\alpha v\|=|\alpha|\|v\|$ for all $v \in V$ and $\alpha \in F$.

Normed vector space

Definition. A norm on a vector space V over F is a mapping

$$
\|\|: V \rightarrow \mathbb{R}
$$

satisfying

1. (positive definite) $\|v\| \geq 0$ for all $v \in V$, and $\|v\|=0$ if and only if $v=0$.
2. (absolute homogeneity) $\|\alpha v\|=|\alpha|\|v\|$ for all $v \in V$ and $\alpha \in F$.
3. (triangle inequality) $\|v+w\| \leq\|v\|+\|w\|$ for all $v, w \in V$.

Metric

Given a norm || || on a vector space V, we can define a metric on V (i.e., a distance function) by

$$
d(v, w):=\|v-w\| .
$$

Metric

Given a norm || || on a vector space V, we can define a metric on V (i.e., a distance function) by

$$
d(v, w):=\|v-w\| .
$$

Properties:

Metric

Given a norm || || on a vector space V, we can define a metric on V (i.e., a distance function) by

$$
d(v, w):=\|v-w\| .
$$

Properties:

1. (positive definite) $d(v, w) \geq 0$ for all $v, w \in V$, and $d(v, w)=0$ if and only if $v=w$.

Metric

Given a norm || || on a vector space V, we can define a metric on V (i.e., a distance function) by

$$
d(v, w):=\|v-w\| .
$$

Properties:

1. (positive definite) $d(v, w) \geq 0$ for all $v, w \in V$, and $d(v, w)=0$ if and only if $v=w$.
2. (symmetry) $d(v, w)=d(w, v)$ for all $v, w \in V$.

Metric

Given a norm || || on a vector space V, we can define a metric on V (i.e., a distance function) by

$$
d(v, w):=\|v-w\| .
$$

Properties:

1. (positive definite) $d(v, w) \geq 0$ for all $v, w \in V$, and $d(v, w)=0$ if and only if $v=w$.
2. (symmetry) $d(v, w)=d(w, v)$ for all $v, w \in V$.
3. (triangle inequality) $d(u, w) \leq d(u, v)+d(v, w)$ for all $u, v, w \in V$.

Equivalence of norms

Every norm on a vector space defines the same topology:

Equivalence of norms

Every norm on a vector space defines the same topology:
Proposition. Let $\left\|\|_{1}\right.$ and $\| \|_{2}$ be two norms on a finite-dimensional vector space V over F. Then these norms are equivalent in the following sense: there exist positive real numbers a, b such that

$$
a\|v\|_{2} \leq\|v\|_{1} \leq b\|v\|_{2}
$$

for all $v \in V$.

Operator norm

Definition. The operator norm on the vector space $M_{n}(F)$ of $n \times n$ matrices with coefficients in F is given by

$$
\|A\|:=\max _{|x| \leq 1}|A x| .
$$

for each $A \in M_{n}(F)$ where $\|$ is the usual norm on F.

Operator norm

Definition. The operator norm on the vector space $M_{n}(F)$ of $n \times n$ matrices with coefficients in F is given by

$$
\|A\|:=\max _{|x| \leq 1}|A x| .
$$

for each $A \in M_{n}(F)$ where $\|$ is the usual norm on F.
Lemma 1. For all $A, B \in M_{n}(F)$ and $x \in F^{n}$,

1. $|A x| \leq\|A\||x|$.
2. $\|A B\| \leq\|A\|\|B\|$.
3. $\left\|A^{k}\right\| \leq\|A\|^{k}$.

The exponential function

Goal for next time:

The exponential function

Goal for next time:
Theorem. For all $A \in M_{n}(F)$ and $t_{0}>0$, the function $\mathbb{R} \rightarrow M_{n}(F)$ given by

$$
t \mapsto \sum_{k \geq 0} \frac{A^{k} t^{k}}{k!}
$$

converges absolutely and uniformly for $t \in\left[-t_{0}, t_{0}\right]$.

