Math 322

February 2, 2022

Announcements

- job talks

Announcements

- job talks
- mathematical writing

Announcements

- job talks
- mathematical writing
- questions?

Bernoulli-type equations revisited

Imagine a moving particle with velocity v and a force $F=F(v)$ acting on the particle against its direction of motion-a frictional force.

Bernoulli-type equations revisited

Imagine a moving particle with velocity v and a force $F=F(v)$ acting on the particle against its direction of motion-a frictional force.

Suppose F has a power series expansion

$$
F(v)=a_{0}+a_{1} v+a_{2} v^{2}+\ldots
$$

Bernoulli-type equations revisited

Imagine a moving particle with velocity v and a force $F=F(v)$ acting on the particle against its direction of motion-a frictional force.

Suppose F has a power series expansion

$$
F(v)=a_{0}+a_{1} v+a_{2} v^{2}+\ldots
$$

Reasonable assumption: $F(-v)=-F(v)$.

Bernoulli-type equations revisited

Imagine a moving particle with velocity v and a force $F=F(v)$ acting on the particle against its direction of motion-a frictional force.

Suppose F has a power series expansion

$$
F(v)=a_{0}+a_{1} v+a_{2} v^{2}+\ldots
$$

Reasonable assumption: $F(-v)=-F(v)$. Hence, all the even terms vanish:

$$
F(v)=a_{1} v+a_{3} v^{3}+a_{5} v^{5}+\ldots
$$

Bernoulli-type equations revisited

$$
F(v)=a_{1} v+a_{3} v^{3}+a_{5} v^{5}+\ldots
$$

Bernoulli-type equations revisited

$$
F(v)=a_{1} v+a_{3} v^{3}+a_{5} v^{5}+\ldots
$$

Newton: $F(v)=m v^{\prime}$.

Bernoulli-type equations revisited

$$
F(v)=a_{1} v+a_{3} v^{3}+a_{5} v^{5}+\ldots
$$

Newton: $F(v)=m v^{\prime}$.
First-order approximation: $F=a_{1} v$.

Bernoulli-type equations revisited

$$
F(v)=a_{1} v+a_{3} v^{3}+a_{5} v^{5}+\ldots
$$

Newton: $F(v)=m v^{\prime}$.
First-order approximation: $F=a_{1} v$.
Equation: $v^{\prime}=\alpha v$.

Bernoulli-type equations revisited

$$
F(v)=a_{1} v+a_{3} v^{3}+a_{5} v^{5}+\ldots
$$

Newton: $F(v)=m v^{\prime}$.
First-order approximation: $F=a_{1} v$.
Equation: $v^{\prime}=\alpha v$.
Solution: $v=e^{\alpha t}$.

Bernoulli-type equations revisited

$$
F(v)=a_{1} v+a_{3} v^{3}+a_{5} v^{5}+\ldots
$$

Newton: $F(v)=m v^{\prime}$.
First-order approximation: $F=a_{1} v$.
Equation: $v^{\prime}=\alpha v$.
Solution: $v=e^{\alpha t}$.
Third-order approximation: $F=a_{1} v+a_{3} v^{3}$:

Bernoulli-type equations revisited

$$
F(v)=a_{1} v+a_{3} v^{3}+a_{5} v^{5}+\ldots
$$

Newton: $F(v)=m v^{\prime}$.
First-order approximation: $F=a_{1} v$.
Equation: $v^{\prime}=\alpha v$.
Solution: $v=e^{\alpha t}$.
Third-order approximation: $F=a_{1} v+a_{3} v^{3}$:

$$
v^{\prime}=\alpha v+\beta v^{3},
$$

Bernoulli-type equations revisited

$$
F(v)=a_{1} v+a_{3} v^{3}+a_{5} v^{5}+\ldots
$$

Newton: $F(v)=m v^{\prime}$.
First-order approximation: $F=a_{1} v$.
Equation: $v^{\prime}=\alpha v$.
Solution: $v=e^{\alpha t}$.
Third-order approximation: $F=a_{1} v+a_{3} v^{3}$:

$$
v^{\prime}=\alpha v+\beta v^{3},
$$

Bernoulli-type! What is the behavior?

Linear, homogeneous, constant coefficients, continued

$$
y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=0
$$

Linear, homogeneous, constant coefficients, continued

$$
y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=0
$$

or

$$
P(D) y=0
$$

Linear, homogeneous, constant coefficients, continued

$$
y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=0
$$

or

$$
P(D) y=0
$$

where $D=d / d t$ and $P(x)=\sum_{i=0}^{n} a_{i} x^{i}$.

Linear, homogeneous, constant coefficients, continued

$$
y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=0
$$

or

$$
P(D) y=0
$$

where $D=d / d t$ and $P(x)=\sum_{i=0}^{n} a_{i} x^{i}$.
Look for solutions of the form $y=e^{r t}$:

Linear, homogeneous, constant coefficients, continued

$$
y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=0
$$

or

$$
P(D) y=0
$$

where $D=d / d t$ and $P(x)=\sum_{i=0}^{n} a_{i} x^{i}$.
Look for solutions of the form $y=e^{r t}$:

$$
P(D) e^{r t}=P(r) e^{r t}=0 \quad \Leftrightarrow \quad P(r)=0 .
$$

Linear, homogeneous, constant coefficients, continued

$$
y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=0
$$

or

$$
P(D) y=0
$$

where $D=d / d t$ and $P(x)=\sum_{i=0}^{n} a_{i} x^{i}$.
Look for solutions of the form $y=e^{r t}$:

$$
P(D) e^{r t}=P(r) e^{r t}=0 \quad \Leftrightarrow \quad P(r)=0 .
$$

So r works if and only if $P(r)=0$.

Linear, homogeneous, constant coefficients, continued
Example. Solve

$$
y^{\prime \prime}-4 y^{\prime}+13 y=0
$$

with initial conditions $y(0)=0$ and $y^{\prime}(0)=1$.

Linear, homogeneous, constant coefficients, continued
Example. Solve

$$
y^{\prime \prime}-4 y^{\prime}+13 y=0
$$

with initial conditions $y(0)=0$ and $y^{\prime}(0)=1$.
General real solution: $y=a e^{2 t} \cos (3 t)+b e^{2 t} \sin (3 t)$

Linear, homogeneous, constant coefficients, continued
Example. Solve

$$
y^{\prime \prime}-4 y^{\prime}+13 y=0
$$

with initial conditions $y(0)=0$ and $y^{\prime}(0)=1$.
General real solution: $y=a e^{2 t} \cos (3 t)+b e^{2 t} \sin (3 t)$
Solution: $y=\frac{1}{3} e^{2 t} \sin (3 t)$

Linear, homogeneous, constant coefficients, continued
Example. Solve

$$
y^{\prime \prime}-4 y^{\prime}+13 y=0
$$

with initial conditions $y(0)=0$ and $y^{\prime}(0)=1$.
General real solution: $y=a e^{2 t} \cos (3 t)+b e^{2 t} \sin (3 t)$
Solution: $y=\frac{1}{3} e^{2 t} \sin (3 t)$

Linear, homogeneous, constant coefficients, continued

Suppose $P(r)$ has a root λ of multiplicity $k>0$.

Linear, homogeneous, constant coefficients, continued

Suppose $P(r)$ has a root λ of multiplicity $k>0$.
Then the general solution will have a summand of the form

$$
a_{0} e^{\lambda t}+a_{1} t e^{\lambda t}+\cdots+a_{k} t^{k-1} e^{\lambda t}
$$

Linear, homogeneous, constant coefficients, continued

- $y^{\prime \prime \prime}+6 y^{\prime \prime}+12 y^{\prime}+8 y=0$

Linear, homogeneous, constant coefficients, continued

- $y^{\prime \prime \prime}+6 y^{\prime \prime}+12 y^{\prime}+8 y=0$

Solution:

$$
y=a e^{-2 t}+b t e^{-2 t}+c t^{2} e^{-2 t}=\left(a+b t+c t^{2}\right) e^{-2 t}
$$

Linear, homogeneous, constant coefficients, continued

- $y^{\prime \prime \prime}+6 y^{\prime \prime}+12 y^{\prime}+8 y=0$

Solution:

$$
y=a e^{-2 t}+b t e^{-2 t}+c t^{2} e^{-2 t}=\left(a+b t+c t^{2}\right) e^{-2 t}
$$

- $y^{(5)}+3 y^{(4)}+3 y^{(3)}+y^{(2)}=0$

Linear, homogeneous, constant coefficients, continued

- $y^{\prime \prime \prime}+6 y^{\prime \prime}+12 y^{\prime}+8 y=0$

Solution:

$$
y=a e^{-2 t}+b t e^{-2 t}+c t^{2} e^{-2 t}=\left(a+b t+c t^{2}\right) e^{-2 t}
$$

- $y^{(5)}+3 y^{(4)}+3 y^{(3)}+y^{(2)}=0$

Solution:

$$
y=a_{1}+a_{2} t+a_{3} e^{-t}+a_{4} t e^{-t}+a_{5} t^{2} e^{-t}
$$

- Suppose $P(r)=r^{3}(r-2)^{2}\left(r^{2}+9\right)^{2}=0$

Linear, homogeneous, constant coefficients, continued

- $y^{\prime \prime \prime}+6 y^{\prime \prime}+12 y^{\prime}+8 y=0$

Solution:

$$
y=a e^{-2 t}+b t e^{-2 t}+c t^{2} e^{-2 t}=\left(a+b t+c t^{2}\right) e^{-2 t}
$$

- $y^{(5)}+3 y^{(4)}+3 y^{(3)}+y^{(2)}=0$

Solution:

$$
y=a_{1}+a_{2} t+a_{3} e^{-t}+a_{4} t e^{-t}+a_{5} t^{2} e^{-t}
$$

- Suppose $P(r)=r^{3}(r-2)^{2}\left(r^{2}+9\right)^{2}=0$

Solution:

$$
\begin{aligned}
y= & a_{1}+a_{2} t+a_{3} t^{2}+b_{1} e^{2 t}+b_{2} t e^{2 t} \\
& +c_{1} \cos (3 t)+c_{2} \sin (3 t)+c_{3} t \cos (3 t)+c_{4} t \sin (3 t)
\end{aligned}
$$

V. Method of undetermined coefficients

$$
P(D) y=f(t) .
$$

V. Method of undetermined coefficients

$$
P(D) y=f(t) .
$$

Solution:

$$
y(t)=y_{p}+y_{h}
$$

where y_{p} is a particular solution, and y_{h} is the general solution to the corresponding homogeneous equation $P(D) y=0$.

V. Method of undetermined coefficients

$$
P(D) y=f(t) .
$$

Solution:

$$
y(t)=y_{p}+y_{h}
$$

where y_{p} is a particular solution, and y_{h} is the general solution to the corresponding homogeneous equation $P(D) y=0$.

$f(t)$	guess for form of y_{p}
polynomial	general polynomial of some degree
$e^{r t}$	$a e^{r t}$
(poly) $e^{r t}$	(general poly) $e^{r t}$
$\cos (\omega t)$ or $\sin (\omega t)$	$a \cos (\omega t)+b \sin (\omega t)$
(poly) $e^{r t} \cos (\omega t)$ or (poly) $e^{r t} \sin (\omega t)$	(gen poly) $e^{r t} \cos (\omega t)+$ (gen poly) $e^{r t} \sin (\omega t)$

V. Method of undetermined coefficients

Example.

$$
y^{\prime \prime}-2 y^{\prime}+y=t^{2}
$$

V. Method of undetermined coefficients

Example.

$$
\begin{gathered}
y^{\prime \prime}-2 y^{\prime}+y=t^{2} \\
y=-5 e^{t}-t e^{t}+6+4 t+t^{2}
\end{gathered}
$$

Graph of solution for $y(0)=1, y^{\prime}(0)=2$:

