Math 322

January 26, 2022

Announcements

- Math colloquium/job talk

Announcements

- Math colloquium/job talk
- ${ }^{\text {ATEX }}$ E workshop: this Thursday, 7-8 p.m.
"The workshop quickly introduces what LaTeX is, why one might want to use it, and how to start TeXing. The main part of the workshop is a demo of using essential TeX commands in Overleaf. We will provide a starting template and encourage students to construct their own documents while following along."

Announcements

- Math colloquium/job talk
- ${ }^{\text {ATEX }}$ E workshop: this Thursday, 7-8 p.m.
"The workshop quickly introduces what LaTeX is, why one might want to use it, and how to start TeXing. The main part of the workshop is a demo of using essential TeX commands in Overleaf. We will provide a starting template and encourage students to construct their own documents while following along."
- Practice problems.

Separable equations: logistic growth model

$P(t)=$ size of population at time t,

Separable equations: logistic growth model

$P(t)=$ size of population at time t,

$$
P^{\prime}(t)=r P(t)\left(1-\frac{P(t)}{K}\right) .
$$

Separable equations: logistic growth model

$P(t)=$ size of population at time t,

$$
P^{\prime}(t)=r P(t)\left(1-\frac{P(t)}{K}\right) .
$$

where $r>0$ is the growth rate and $K>0$ is the carrying capacity.

Separable equations: logistic growth model

$P(t)=$ size of population at time t,

$$
P^{\prime}(t)=r P(t)\left(1-\frac{P(t)}{K}\right) .
$$

where $r>0$ is the growth rate and $K>0$ is the carrying capacity.

- Behavior when $0<P(t) \ll K$?

Separable equations: logistic growth model

$P(t)=$ size of population at time t,

$$
P^{\prime}(t)=r P(t)\left(1-\frac{P(t)}{K}\right) .
$$

where $r>0$ is the growth rate and $K>0$ is the carrying capacity.

- Behavior when $0<P(t) \ll K$?
- Behavior as $P(t) \rightarrow K$?

Separable equations: logistic growth model

$$
P^{\prime}(t)=r P(t)\left(1-\frac{P(t)}{K}\right)
$$

Separable equations: logistic growth model

$$
P^{\prime}(t)=r P(t)\left(1-\frac{P(t)}{K}\right)
$$

Solution:

$$
P(t)=\frac{P(0) K}{P(0)+(K-P(0)) e^{-r t}}
$$

Separable equations: logistic growth model

$$
P^{\prime}(t)=r P(t)\left(1-\frac{P(t)}{K}\right)
$$

Solution:

$$
P(t)=\frac{P(0) K}{P(0)+(K-P(0)) e^{-r t}}
$$

What happens as $t \rightarrow \infty$?

Separable equations: logistic growth model

$$
P^{\prime}(t)=r P(t)\left(1-\frac{P(t)}{K}\right), \quad P(t)=\frac{P(0) K}{P(0)+(K-P(0)) e^{-r t}}
$$

Separable equations: logistic growth model

$$
P^{\prime}(t)=r P(t)\left(1-\frac{P(t)}{K}\right), \quad P(t)=\frac{P(0) K}{P(0)+(K-P(0)) e^{-r t}}
$$

Example. A state game commission releases 40 elk into a game refuge. After 5 years, the elk population is 104 . The commission believes that the refuge can support no more than 4000 elk. Use a logistic model to predict the elk population in 15 years.

Separable equations: logistic growth model

$$
P^{\prime}(t)=r P(t)\left(1-\frac{P(t)}{K}\right), \quad P(t)=\frac{P(0) K}{P(0)+(K-P(0)) e^{-r t}}
$$

Example. A state game commission releases 40 elk into a game refuge. After 5 years, the elk population is 104 . The commission believes that the refuge can support no more than 4000 elk. Use a logistic model to predict the elk population in 15 years.
$P(0)=40$,

Separable equations: logistic growth model

$$
P^{\prime}(t)=r P(t)\left(1-\frac{P(t)}{K}\right), \quad P(t)=\frac{P(0) K}{P(0)+(K-P(0)) e^{-r t}}
$$

Example. A state game commission releases 40 elk into a game refuge. After 5 years, the elk population is 104 . The commission believes that the refuge can support no more than 4000 elk. Use a logistic model to predict the elk population in 15 years.
$P(0)=40, P(5)=104$,

Separable equations: logistic growth model

$$
P^{\prime}(t)=r P(t)\left(1-\frac{P(t)}{K}\right), \quad P(t)=\frac{P(0) K}{P(0)+(K-P(0)) e^{-r t}}
$$

Example. A state game commission releases 40 elk into a game refuge. After 5 years, the elk population is 104 . The commission believes that the refuge can support no more than 4000 elk. Use a logistic model to predict the elk population in 15 years.
$P(0)=40, P(5)=104, K=4000$

Separable equations: logistic growth model

$$
P^{\prime}(t)=r P(t)\left(1-\frac{P(t)}{K}\right), \quad P(t)=\frac{P(0) K}{P(0)+(K-P(0)) e^{-r t}}
$$

Example. A state game commission releases 40 elk into a game refuge. After 5 years, the elk population is 104 . The commission believes that the refuge can support no more than 4000 elk. Use a logistic model to predict the elk population in 15 years.
$P(0)=40, P(5)=104, K=4000$
$P(t)=\frac{4000 P(0)}{P(0)+(4000-P(0)) e^{-r t}}=\frac{4000}{1+99 e^{-r t}}$

Separable equations: logistic growth model

$$
P^{\prime}(t)=r P(t)\left(1-\frac{P(t)}{K}\right), \quad P(t)=\frac{P(0) K}{P(0)+(K-P(0)) e^{-r t}}
$$

Example. A state game commission releases 40 elk into a game refuge. After 5 years, the elk population is 104 . The commission believes that the refuge can support no more than 4000 elk. Use a logistic model to predict the elk population in 15 years.
$P(0)=40, P(5)=104, K=4000$
$P(t)=\frac{4000 P(0)}{P(0)+(4000-P(0)) e^{-r t}}=\frac{4000}{1+99 e^{-r t}}=\frac{4000}{1+99 e^{-0.194 t}}$

Separable equations: logistic growth model

$$
P^{\prime}(t)=r P(t)\left(1-\frac{P(t)}{K}\right), \quad P(t)=\frac{P(0) K}{P(0)+(K-P(0)) e^{-r t}}
$$

Example. A state game commission releases 40 elk into a game refuge. After 5 years, the elk population is 104 . The commission believes that the refuge can support no more than 4000 elk. Use a logistic model to predict the elk population in 15 years.
$P(0)=40, P(5)=104, K=4000$
$P(t)=\frac{4000 P(0)}{P(0)+(4000-P(0)) e^{-r t}}=\frac{4000}{1+99 e^{-r t}}=\frac{4000}{1+99 e^{-0.194 t}}$

$$
P(15)=\frac{4000}{1+99 e^{-0.194 \cdot 15}} \approx 626 .
$$

Separable-homogeneity trick

$$
y^{\prime}=F\left(\frac{y}{t}\right)
$$

Separable—homogeneity trick

$$
y^{\prime}=F\left(\frac{y}{t}\right)
$$

Trick: substitute $v=y / t$ to get separable equation:

Separable-homogeneity trick

$$
y^{\prime}=F\left(\frac{y}{t}\right)
$$

Trick: substitute $v=y / t$ to get separable equation:

$$
y^{\prime}=F\left(\frac{y}{t}\right)
$$

Separable—homogeneity trick

$$
y^{\prime}=F\left(\frac{y}{t}\right)
$$

Trick: substitute $v=y / t$ to get separable equation:

$$
y^{\prime}=F\left(\frac{y}{t}\right) \Rightarrow v+t v^{\prime}=F(v)
$$

Separable—homogeneity trick

$$
y^{\prime}=F\left(\frac{y}{t}\right)
$$

Trick: substitute $v=y / t$ to get separable equation:

$$
y^{\prime}=F\left(\frac{y}{t}\right) \Rightarrow v+t v^{\prime}=F(v) \Rightarrow \frac{v^{\prime}}{F(v)-v}=\frac{1}{t}
$$

Separable-homogeneity trick

Example.

$$
y^{\prime}=\frac{y^{2}+2 y t}{t^{2}}
$$

Separable-homogeneity trick

Example.

$$
y^{\prime}=\frac{y^{2}+2 y t}{t^{2}}
$$

Solution:

$$
y=\frac{a t^{2}}{1-a t}
$$

Separable-homogeneity trick

$$
y^{\prime}=\frac{y^{2}+2 y t}{t^{2}}
$$

The solution when $y(1)=1$ is $y=\frac{t^{2}}{2-t}$:

Separable-homogeneity trick

$$
y^{\prime}=\frac{y^{2}+2 y t}{t^{2}}
$$

The solution when $y(1)=1$ is $y=\frac{t^{2}}{2-t}$:

Separable-homogeneity trick

$$
y^{\prime}=\frac{y^{2}+2 y t}{t^{2}}
$$

Sage code:

```
sage: t = var('t')
sage: y = function('y')(t)
sage: desolve(diff(y,t)-(y^2+2*y*t)/t^2,y)
-(t^2 + t*y(t))/y(t) &= _C
sage: desolve(diff(y,t)-(y^2+2*y*t)/t^2,y,ics=[1,1])
-(t^2 + t*y(t))/y(t) &= -2
```

