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I. Separable equations

A separable differential equation has the form (or can be
manipulated to have the form)

p(y)dy
dt = q(t).

It is solved by integration:∫
p(y) dy =

∫
q(t) dt.
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First example

y ′ = 3t
y

General implicit solution:

y(t)2 = 3t2 + c
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Exponential growth and decay

y(t) = population size

rate of growth ∝ size

y ′(t) = ry(t)

Solution:
y(t) = y0ert
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Exponential growth and decay

Example. If y(t) = aert with y(0) = a 6= 0 at what time t has the
population doubled?



Population model based on Newton’s law of cooling
Let r and S be positive constants and suppose

y ′(t) = r(S − y(t)).

I When is the population increasing? Decreasing?
I Long-term behavior of the population?
I Solve the equation assuming y < S.

solution: The equation is separable:

∫ dy
S − y =

∫
r dt ⇒ − ln(S − y) = rt + c

⇒ S − y = ae−rt

⇒ y = S − ae−rt .

Note that y(t)→ S as t →∞.
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Population model based on Newton’s law of cooling
Solution: y(t) = S − ae−rt .

If I = y(0) is the initial population, then
y(t) = S − (S − I)e−rt .
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