Math 322

January 24, 2022

I. Separable equations

A separable differential equation has the form (or can be manipulated to have the form)

$$p(y)\frac{dy}{dt}=q(t).$$

I. Separable equations

A separable differential equation has the form (or can be manipulated to have the form)

$$p(y)\frac{dy}{dt}=q(t).$$

It is solved by integration:

$$\int p(y)\,dy=\int q(t)\,dt.$$

First example

$$y' = \frac{3t}{y}$$

First example

$$y'=\frac{3t}{y}$$

General implicit solution:

$$y(t)^2 = 3t^2 + c$$

First example

$$y' = \frac{3t}{y}$$

General implicit solution:

$$y(t)^2 = 3t^2 + c$$

$$y(t) = population size$$

 $y(t) = ext{population size}$ rate of growth $\propto ext{size}$

$$y(t)=$$
 population size rate of growth \propto size $y'(t)=ry(t)$

$$y(t) = \text{population size}$$

rate of growth \propto size
 $y'(t) = ry(t)$

Solution:

$$y(t) = y_0 e^{rt}$$

Example. If $y(t) = ae^{rt}$ with $y(0) = a \neq 0$ at what time t has the population doubled?

Let r and S be positive constants and suppose

$$y'(t) = r(S - y(t)).$$

Let r and S be positive constants and suppose

$$y'(t) = r(S - y(t)).$$

▶ When is the population increasing? Decreasing?

Let r and S be positive constants and suppose

$$y'(t) = r(S - y(t)).$$

- ▶ When is the population increasing? Decreasing?
- Long-term behavior of the population?

Let r and S be positive constants and suppose

$$y'(t) = r(S - y(t)).$$

- ▶ When is the population increasing? Decreasing?
- ▶ Long-term behavior of the population?
- ▶ Solve the equation assuming y < S.

Let r and S be positive constants and suppose

$$y'(t) = r(S - y(t)).$$

- ▶ When is the population increasing? Decreasing?
- ▶ Long-term behavior of the population?
- ▶ Solve the equation assuming y < S.

Let r and S be positive constants and suppose

$$y'(t) = r(S - y(t)).$$

- ▶ When is the population increasing? Decreasing?
- ▶ Long-term behavior of the population?
- ▶ Solve the equation assuming y < S.

$$\int \frac{dy}{S - y} = \int r \, dt$$

Let r and S be positive constants and suppose

$$y'(t) = r(S - y(t)).$$

- ▶ When is the population increasing? Decreasing?
- ► Long-term behavior of the population?
- ▶ Solve the equation assuming y < S.

$$\int \frac{dy}{S - y} = \int r \, dt \quad \Rightarrow \quad -\ln(S - y) = rt + c$$

Let r and S be positive constants and suppose

$$y'(t) = r(S - y(t)).$$

- ▶ When is the population increasing? Decreasing?
- ▶ Long-term behavior of the population?
- ▶ Solve the equation assuming y < S.

$$\int \frac{dy}{S - y} = \int r \, dt \quad \Rightarrow \quad -\ln(S - y) = rt + c$$

$$\Rightarrow \quad S - y = ae^{-rt}$$

Let r and S be positive constants and suppose

$$y'(t) = r(S - y(t)).$$

- ▶ When is the population increasing? Decreasing?
- ► Long-term behavior of the population?
- ▶ Solve the equation assuming y < S.

$$\int \frac{dy}{S - y} = \int r \, dt \quad \Rightarrow \quad -\ln(S - y) = rt + c$$

$$\Rightarrow \quad S - y = ae^{-rt}$$

$$\Rightarrow \quad y = S - ae^{-rt}.$$

Let r and S be positive constants and suppose

$$y'(t) = r(S - y(t)).$$

- ▶ When is the population increasing? Decreasing?
- ► Long-term behavior of the population?
- ▶ Solve the equation assuming y < S.

SOLUTION: The equation is separable:

$$\int \frac{dy}{S - y} = \int r \, dt \quad \Rightarrow \quad -\ln(S - y) = rt + c$$

$$\Rightarrow \quad S - y = ae^{-rt}$$

$$\Rightarrow \quad y = S - ae^{-rt}.$$

Note that $y(t) \to S$ as $t \to \infty$.

Solution: $y(t) = S - ae^{-rt}$.

Solution:
$$y(t) = S - ae^{-rt}$$
.

If
$$I = y(0)$$
 is the initial population, then

$$y(t) = S - (S - I)e^{-rt}.$$

Solution: $y(t) = S - ae^{-rt}$.

If I = y(0) is the initial population, then

$$y(t) = S - (S - I)e^{-rt}.$$

