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Announcements

I Solutions to Wednesday’s practice problems.

I HW due Monday.
I Office hours on Sunday.
I Link from Olly.
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II. A. Exact equations.

M(t, y) + N(t, y) dy
dt = 0

where
∂M
∂y = ∂N

∂t

Look for a function Φ(t, y) = 0 defining y implicitly.

Φ(t, y) =
∫

M(t, y) dt =: m(t, y) + f (y)

determines m, and

N(t, y) = ∂Φ
∂y = ∂

∂y (m(t, y) + f (y)).

determines y (up to constant).
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Example

M(t, y) + N(t, y) dy
dt = 0

Φ(t, y) =
∫

M(t, y) dt =: m(t, y) + f (y)

N(t, y) = ∂Φ
∂y = ∂

∂y (m(t, y) + f (y)).

Example.
sin(t + y) + (2y + sin(t + y))y ′ = 0
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Example

Slope field and solutions to

sin(t + y) + (2y + sin(t + y))y ′ = 0



Relation to potential functions and gradient vector fields

Consider the vector field:

F : R2 → R2

(t, y) 7→ (M(t, y),N(t, y))

For our implicit solution Φ, we have

∇Φ(t, y) =
(
∂Φ
∂t ,

∂Φ
∂y

)
= (M(t, y),N(t, y))

Sage demonstration.
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Integrating factor to force exactness

If
M(t, y) + N(t, y) dy

dt
is not exact, look for function µ(t, y) so that

µ(t, y)M(t, y) + µ(t, y)N(t, y) dy
dt = 0,

is exact.



Integrating factor example

ty2 + 4t2y + (3t2y + 4t3)dy
dt = 0

Try µ(t, y) = tmyn:

(tmyn)(ty2 + 4t2y) + tmyn(3t2y + 4t3)dy
dt = 0

Exactness:

∂

∂y (tm+1yn+2 + 4tm+2yn+1) = ∂

∂t (3tm+2yn+1 + 4tm+3yn).

(n+2)tm+1yn+1+4(n+1)tm+2yn = 3(m+2)tm+1yn+1+4(m+3)tm+2yn

m = −1 and n = 1
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Integrating factor example

ty2 + 4t2y + (3t2y + 4t3)dy
dt = 0, µ(t, y) = y

t  

y3 + 4ty2 + (3ty2 + 4t2y)dy
dt = 0

Solution:
ty3 + 2t2y2 = c
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Integrating factors

Integrating factors always exist!

Although the may be hard to find.
See the lecture notes.
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