Math 322

January 28, 2022

Announcements

- Solutions to Wednesday's practice problems.

Announcements

- Solutions to Wednesday's practice problems.
- HW due Monday.

Announcements

- Solutions to Wednesday's practice problems.
- HW due Monday.
- Office hours on Sunday.

Announcements

- Solutions to Wednesday's practice problems.
- HW due Monday.
- Office hours on Sunday.
- Link from Olly.
II. A. Exact equations.

$$
M(t, y)+N(t, y) \frac{d y}{d t}=0
$$

II. A. Exact equations.

$$
M(t, y)+N(t, y) \frac{d y}{d t}=0
$$

where

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

II. A. Exact equations.

$$
M(t, y)+N(t, y) \frac{d y}{d t}=0
$$

where

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Look for a function $\Phi(t, y)=0$ defining y implicitly.

II. A. Exact equations.

$$
M(t, y)+N(t, y) \frac{d y}{d t}=0
$$

where

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Look for a function $\Phi(t, y)=0$ defining y implicitly.

$$
\Phi(t, y)=\int M(t, y) d t=: m(t, y)+f(y)
$$

determines m, and

II. A. Exact equations.

$$
M(t, y)+N(t, y) \frac{d y}{d t}=0
$$

where

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Look for a function $\Phi(t, y)=0$ defining y implicitly.

$$
\Phi(t, y)=\int M(t, y) d t=: m(t, y)+f(y)
$$

determines m, and

$$
N(t, y)=\frac{\partial \Phi}{\partial y}=\frac{\partial}{\partial y}(m(t, y)+f(y)) .
$$

determines y (up to constant).

Example

$$
M(t, y)+N(t, y) \frac{d y}{d t}=0
$$

Example

$$
\begin{gathered}
M(t, y)+N(t, y) \frac{d y}{d t}=0 \\
\Phi(t, y)=\int M(t, y) d t=: m(t, y)+f(y) \\
N(t, y)=\frac{\partial \Phi}{\partial y}=\frac{\partial}{\partial y}(m(t, y)+f(y))
\end{gathered}
$$

Example

$$
\begin{gathered}
M(t, y)+N(t, y) \frac{d y}{d t}=0 \\
\Phi(t, y)=\int M(t, y) d t=: m(t, y)+f(y) \\
N(t, y)=\frac{\partial \Phi}{\partial y}=\frac{\partial}{\partial y}(m(t, y)+f(y))
\end{gathered}
$$

Example.

$$
\sin (t+y)+(2 y+\sin (t+y)) y^{\prime}=0
$$

Example

Slope field and solutions to

$$
\sin (t+y)+(2 y+\sin (t+y)) y^{\prime}=0
$$

Relation to potential functions and gradient vector fields

Consider the vector field:

$$
\begin{aligned}
F: \mathbb{R}^{2} & \rightarrow \mathbb{R}^{2} \\
(t, y) & \mapsto(M(t, y), N(t, y))
\end{aligned}
$$

Relation to potential functions and gradient vector fields

Consider the vector field:

$$
\begin{aligned}
F: \mathbb{R}^{2} & \rightarrow \mathbb{R}^{2} \\
(t, y) & \mapsto(M(t, y), N(t, y))
\end{aligned}
$$

For our implicit solution Φ, we have

$$
\nabla \Phi(t, y)=\left(\frac{\partial \Phi}{\partial t}, \frac{\partial \Phi}{\partial y}\right)=(M(t, y), N(t, y))
$$

Relation to potential functions and gradient vector fields

Consider the vector field:

$$
\begin{aligned}
F: \mathbb{R}^{2} & \rightarrow \mathbb{R}^{2} \\
(t, y) & \mapsto(M(t, y), N(t, y))
\end{aligned}
$$

For our implicit solution Φ, we have

$$
\nabla \Phi(t, y)=\left(\frac{\partial \Phi}{\partial t}, \frac{\partial \Phi}{\partial y}\right)=(M(t, y), N(t, y))
$$

Sage demonstration.

Integrating factor to force exactness

If

$$
M(t, y)+N(t, y) \frac{d y}{d t}
$$

is not exact, look for function $\mu(t, y)$ so that

$$
\mu(t, y) M(t, y)+\mu(t, y) N(t, y) \frac{d y}{d t}=0
$$

is exact.

Integrating factor example

$$
t y^{2}+4 t^{2} y+\left(3 t^{2} y+4 t^{3}\right) \frac{d y}{d t}=0
$$

Integrating factor example

$$
t y^{2}+4 t^{2} y+\left(3 t^{2} y+4 t^{3}\right) \frac{d y}{d t}=0
$$

Try $\mu(t, y)=t^{m} y^{n}$:

$$
\left(t^{m} y^{n}\right)\left(t y^{2}+4 t^{2} y\right)+t^{m} y^{n}\left(3 t^{2} y+4 t^{3}\right) \frac{d y}{d t}=0
$$

Integrating factor example

$$
t y^{2}+4 t^{2} y+\left(3 t^{2} y+4 t^{3}\right) \frac{d y}{d t}=0
$$

Try $\mu(t, y)=t^{m} y^{n}:$

$$
\left(t^{m} y^{n}\right)\left(t y^{2}+4 t^{2} y\right)+t^{m} y^{n}\left(3 t^{2} y+4 t^{3}\right) \frac{d y}{d t}=0
$$

Exactness:

$$
\frac{\partial}{\partial y}\left(t^{m+1} y^{n+2}+4 t^{m+2} y^{n+1}\right)=\frac{\partial}{\partial t}\left(3 t^{m+2} y^{n+1}+4 t^{m+3} y^{n}\right)
$$

Integrating factor example

$$
t y^{2}+4 t^{2} y+\left(3 t^{2} y+4 t^{3}\right) \frac{d y}{d t}=0
$$

Try $\mu(t, y)=t^{m} y^{n}:$

$$
\left(t^{m} y^{n}\right)\left(t y^{2}+4 t^{2} y\right)+t^{m} y^{n}\left(3 t^{2} y+4 t^{3}\right) \frac{d y}{d t}=0
$$

Exactness:

$$
\begin{aligned}
\frac{\partial}{\partial y}\left(t^{m+1} y^{n+2}+4 t^{m+2} y^{n+1}\right) & =\frac{\partial}{\partial t}\left(3 t^{m+2} y^{n+1}+4 t^{m+3} y^{n}\right) \\
(n+2) t^{m+1} y^{n+1}+4(n+1) t^{m+2} y^{n} & =3(m+2) t^{m+1} y^{n+1}+4(m+3) t^{m+2} y^{n}
\end{aligned}
$$

Integrating factor example

$$
t y^{2}+4 t^{2} y+\left(3 t^{2} y+4 t^{3}\right) \frac{d y}{d t}=0
$$

Try $\mu(t, y)=t^{m} y^{n}:$

$$
\left(t^{m} y^{n}\right)\left(t y^{2}+4 t^{2} y\right)+t^{m} y^{n}\left(3 t^{2} y+4 t^{3}\right) \frac{d y}{d t}=0
$$

Exactness:

$$
\begin{gathered}
\frac{\partial}{\partial y}\left(t^{m+1} y^{n+2}+4 t^{m+2} y^{n+1}\right)=\frac{\partial}{\partial t}\left(3 t^{m+2} y^{n+1}+4 t^{m+3} y^{n}\right) \\
(n+2) t^{m+1} y^{n+1}+4(n+1) t^{m+2} y^{n}=3(m+2) t^{m+1} y^{n+1}+4(m+3) t^{m+2} y^{n} \\
m=-1 \quad \text { and } \quad n=1
\end{gathered}
$$

Integrating factor example

$$
t y^{2}+4 t^{2} y+\left(3 t^{2} y+4 t^{3}\right) \frac{d y}{d t}=0, \quad \mu(t, y)=\frac{y}{t} \rightsquigarrow
$$

Integrating factor example

$$
\begin{gathered}
t y^{2}+4 t^{2} y+\left(3 t^{2} y+4 t^{3}\right) \frac{d y}{d t}=0, \quad \mu(t, y)=\frac{y}{t} \rightsquigarrow \\
y^{3}+4 t y^{2}+\left(3 t y^{2}+4 t^{2} y\right) \frac{d y}{d t}=0
\end{gathered}
$$

Integrating factor example

$$
\begin{gathered}
t y^{2}+4 t^{2} y+\left(3 t^{2} y+4 t^{3}\right) \frac{d y}{d t}=0, \quad \mu(t, y)=\frac{y}{t} \rightsquigarrow \\
y^{3}+4 t y^{2}+\left(3 t y^{2}+4 t^{2} y\right) \frac{d y}{d t}=0
\end{gathered}
$$

Solution:

$$
t y^{3}+2 t^{2} y^{2}=c
$$

Integrating factors

Integrating factors always exist!

Integrating factors

Integrating factors always exist! Although the may be hard to find.

Integrating factors

Integrating factors always exist! Although the may be hard to find. See the lecture notes.

