Solutions to Practice Problems Math 212

1. Let F(z,y,2) = (x + 3z,2y% y) be a vector field, and let C'(t) = (2t,¢>, ¢ + ¢*) be a
parametrized curve with ¢t € [0, 1]. Calculate the flow of F' along C' in two ways: (i)
integrating the flow form for F over C, and (ii) using the classical formula for |, o F-dC.

SOLUTION: Integrating the flow form:
/wF = /(x+3z)dx+xy2dy+ydz
C C
= / (2t + 3(t + t2)) d(2t) + (2t)(t)2 d(t3) + 3 d(t + 1?)
[0,1]
— / (2t + 3(t + %)) (2) dt + (2t)(t*)*(3t?) dt + (1 + 2t) dt
[0,1]
1
= / (2t + 3(t + %)) (2) + (2t)(£*)*(3t%) + t*(1 + 2t) dt
0

1
:/ 6% +2t* + 3+ 6t + 10t dt
0
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Classical formula:

/F-F:
C

1

F(C(t))-C'(t)dt

1
F(2t, 13t +1%) - (2,312, 1+ 2t) dt
1
(2t 4 3(t + %), (26)(t*)2, %) - (2,312, 1 + 2t) dt

1
(5t + 3t%,2t7 %) - (2,317, 1 + 2t) dt

1
667+ 2t + 2+ 662+ 10t dt
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2. Let F(x,y,2) = (y?, z,3x) be a vector field, and let S(u,v) = (u, v, uv) be a parametrized
curve with (u,v) € [0,1]%. Calculate the flux of F' through S in two ways: (i) integrat-

—

ing the flux form for F' over S, and (ii) using the classical formula for [, F - 7.

SOLUTION: Integrating the flux form:
/wF:/yZdy/\dz—zdx/\dz—l—Bxdx/\dy
S s

:/ v? dv A d(uv) — uv du A d(uv) + 3udu A dv

[0,1]2

:/ v dv A (vdu+udv) —uvdu A (vdu+udv) + 3udu A dv
[0,1]?

:/ —v¥du A dv—vPvdu A dv+ 3udu A dv
[0,1)2

1,1
:/ / —0® —u?v + 3ududv
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Classical formula:

/F n—// +(Su x Sy)du dv

:/0/0 Flu,v,w) - (1,0,0) x (0, 1,)) du dv

11
://(02,uv,3u)~(—v,—u,1)dudv
// —v? — u*v + 3ududv
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3. Thinking of each of the following 1-forms in R?® as flow forms, find the corresponding
vector fields.

(a) w=xdr+In(2? + 2?)dy + (y + x2) d=z.

SOLUTION: F(x,y,2) = (z,In(z? + 2%),y + x2).



(b)

n = cos(zy) dx + sin(yz) dz.

SOLUTION: F(x,y,z) = (cos(xy),0,sin(yz)).

4. Thinking of each of the following 2-forms in R? as flux forms, find the corresponding
vector fields.

(a)

n=—drANdy+ zydx Adz.

SOLUTION: F(z,y,z) = (0,—xy, —1).

w=dz A (ydy — (v + 2%)dz).

SOLUTION: F(x,y,z) = (0,2 + 2% y).

Give an concrete example of a O-form, 1, in R?, i.e., and element n € Q°R3.

SOLUTION: A 0-form is just a real-valued function, for example, n = 22 + 3% + 2%

Interpret integration of dn in terms of classical vector calculus. What does Stokes’
theorem say in this context?

SOLUTION: The 1-form dn is the flow form for the gradient of the function 7, i.e.,
dn = wy, = 2z dr + 2y dy + 2z dz.

Integrating dn along a curve with give the flow of the gradient vector field Vn
along the curve. By Stokes’ theorem the integral will just give the change in

potential, n(C(b)) — n(C(a)), where the domain of C'is [a, b].

6. Let ¢ be a function on R3, and let F' be a vector field in R?. Describe grad(¢), curl(F),
and div(F') using flow forms, flux forms, and the exterior derivative operator, d.

SOLUTION: We have

7. (a)

dp = Wgrad(e),
dwF _ wcurl(F),

dw? = div(F) dz A dy A dz.

State Stokes’ theorem in terms of differential forms.

SOLUTION: If S is a k-chain in R", and w is a (k — 1)-form in R™, then

/ w:/dw.
a8 s



(b) Starting with w € Q'R for each of 1 = 0,1, 2, give a classical /physical interpreta-
tion of Stokes’ theorem.

SOLUTION: If w € Q°R3, then w is just a real-valued function on R®. Say w = ¢.
Then dw = d¢ = wv 4, the flow form for the gradient of ¢.

Given a curve C': [0, 1] — R3, Stokes’ theorem says

/C Vé.T= /C do= [ o=a(C(1)-o(Cl0)).

The flow of a gradient vector field is given by the change in potential.

If w € Q'R3, then we can write w = wp for some vector field F' on R®. Let
S :10,1]> = R3 be a surface in R3. Then Stokes’ theorem says

/(VxF)-ﬁ:/wVXF:/dwF:/ wF:/ F-t
s s S as as

The flux of the curl of a vector field through a surface is the circulation of the
vector field along the boundary of the surface.

If w € Q2R3, then we can write w = w’ for some vector field F' on R?. Let
V :[0,1]*> = R® be a parametrized solid in R®. Then Stokes’ theorem says

/(V-F)dV:/V-Fdac/\dy/\dz:/dwF:/ sz/ F ..
\% \% \% oV oV

The integral of the divergence of F' over a solid is the flux of F' through the
boundary of the solid.

8. What does the fact that d?> = 0 say in terms of grad, curl, and div?
SOLUTION: Let ¢ be a real-valued function on R3. Then
0= d2¢ _ d(wgrad(gzﬁ)) _ wcurl(grad((b))'

Hence, curl(grad(¢)) =V x (V¢) = 0.
Similarly, if F is a vector field in R3, then

0 = d*wp = d(w™ ) = div(curl(F)) dz A dy A dz.
Hence, div(curl(F)) =V - (V x F) = 0.

9. Let w be a k-form. When is it true that dw = 0 implies there exists a (k — 1)-form,
A such that w = dA? If the condition holds, what is the implication for grad, for curl,
and for div?

SOLUTION: A subset U of R" is simply connected if each closed curve in U can be
shrunk to a point without leaving U. The plane with the origin removed is not simply



connected. If the domain of w is simply connected, for example, if the domain is all of
R", then dw = 0 implies the existence of a form A such that w = dA\.

So suppose we have a vector field F' defined on a simply connected subset of R3 (for
instance, defined on all of R?). Then if curl(F) = 0, we know that F is a gradient
vector field, i.e., F' has a potential. (Reason: curl(F) = 0 implies 0 = w™") = dwp,
which implies w = d¢ for some 0-form ¢.) Similarly, if div(F) = 0, then F' has a vector
potential, i.e., F' = curl(G) for some vector field G. (Reason: div(F) = 0 implies
0 = div(F)dx A dy A dz = dw”, which implies w? = d\ for some 1-form X\. We can
then write A = wg for some vector field G. It follows that F' = curl(G).)



