
Solutions to Practice Problems Math 212

1. Let F (x, y, z) = (x + 3z, xy2, y) be a vector field, and let C(t) = (2t, t3, t + t2) be a
parametrized curve with t ∈ [0, 1]. Calculate the flow of F along C in two ways: (i)
integrating the flow form for F over C, and (ii) using the classical formula for

∫
C
F ·dC.

solution: Integrating the flow form:∫
C

ωF =

∫
C

(x+ 3z) dx+ xy2 dy + y dz

=

∫
[0,1]

(2t+ 3(t+ t2)) d(2t) + (2t)(t3)2 d(t3) + t3 d(t+ t2)

=

∫
[0,1]

(2t+ 3(t+ t2))(2) dt+ (2t)(t3)2(3t2) dt+ t3(1 + 2t) dt

=

∫ 1

0

(2t+ 3(t+ t2))(2) + (2t)(t3)2(3t2) + t3(1 + 2t) dt

=

∫ 1

0

6 t9 + 2 t4 + t3 + 6 t2 + 10 t dt

=
3

5
+

2

5
+

1

4
+ 2 + 5

=
33

4
.

Classical formula:∫
C

F · ~t =

∫ 1

0

F (C(t)) · C ′(t) dt

=

∫ 1

0

F (2t, t3, t+ t2) · (2, 3t2, 1 + 2t) dt

=

∫ 1

0

(2t+ 3(t+ t2), (2t)(t3)2, t3) · (2, 3t2, 1 + 2t) dt

=

∫ 1

0

(5t+ 3t2, 2t7, t3) · (2, 3t2, 1 + 2t) dt

=

∫ 1

0

6 t9 + 2 t4 + t3 + 6 t2 + 10 t dt

=
3

5
+

2

5
+

1

4
+ 2 + 5

=
33

4
.



2. Let F (x, y, z) = (y2, z, 3x) be a vector field, and let S(u, v) = (u, v, uv) be a parametrized
curve with (u, v) ∈ [0, 1]2. Calculate the flux of F through S in two ways: (i) integrat-
ing the flux form for F over S, and (ii) using the classical formula for

∫
C
F · ~n.

solution: Integrating the flux form:∫
S

ωF =

∫
S

y2 dy ∧ dz − z dx ∧ dz + 3x dx ∧ dy

=

∫
[0,1]2

v2 dv ∧ d(uv)− uv du ∧ d(uv) + 3u du ∧ dv

=

∫
[0,1]2

v2 dv ∧ (v du+ u dv)− uv du ∧ (v du+ u dv) + 3u du ∧ dv

=

∫
[0,1]2
−v3 du ∧ dv − u2v du ∧ dv + 3u du ∧ dv

=

∫ 1

0

∫ 1

0

−v3 − u2v + 3u du dv

= −1

4
− 1

6
+

3

2

=
13

12
.

Classical formula:∫
S

F · ~n =

∫ 1

0

∫ 1

0

F (S(u, v)) · (Su × Sv)du dv

=

∫ 1

0

∫ 1

0

F (u, v, uv) · ((1, 0, v)× (0, 1, u)) du dv

=

∫ 1

0

∫ 1

0

(v2, uv, 3u) · (−v,−u, 1) du dv

=

∫ 1

0

∫ 1

0

−v2 − u2v + 3u du dv

= −1

4
− 1

6
+

3

2

=
13

12
.

3. Thinking of each of the following 1-forms in R3 as flow forms, find the corresponding
vector fields.

(a) ω = x dx+ ln(x2 + z2) dy + (y + xz) dz.

solution: F (x, y, z) = (x, ln(x2 + z2), y + xz).



(b) η = cos(xy) dx+ sin(yz) dz.

solution: F (x, y, z) = (cos(xy), 0, sin(yz)).

4. Thinking of each of the following 2-forms in R3 as flux forms, find the corresponding
vector fields.

(a) η = −dx ∧ dy + xy dx ∧ dz.

solution: F (x, y, z) = (0,−xy,−1).

(b) ω = dx ∧ (y dy − (x+ z2) dz).

solution: F (x, y, z) = (0, x+ z2, y).

5. (a) Give an concrete example of a 0-form, η, in R3, i.e., and element η ∈ Ω0R3.

solution: A 0-form is just a real-valued function, for example, η = x2 + y2 + z2.

(b) Interpret integration of dη in terms of classical vector calculus. What does Stokes’
theorem say in this context?

solution: The 1-form dη is the flow form for the gradient of the function η, i.e.,

dη = ω∇ η = 2x dx+ 2y dy + 2z dz.

Integrating dη along a curve with give the flow of the gradient vector field ∇η
along the curve. By Stokes’ theorem the integral will just give the change in
potential, η(C(b))− η(C(a)), where the domain of C is [a, b].

6. Let φ be a function on R3, and let F be a vector field in R3. Describe grad(φ), curl(F ),
and div(F ) using flow forms, flux forms, and the exterior derivative operator, d.

solution: We have

dφ = ωgrad(φ),

dωF = ωcurl(F ),

dωF = div(F ) dx ∧ dy ∧ dz.

7. (a) State Stokes’ theorem in terms of differential forms.

solution: If S is a k-chain in Rn, and ω is a (k − 1)-form in Rn, then∫
∂S

ω =

∫
S

dω.



(b) Starting with ω ∈ ΩiR3 for each of i = 0, 1, 2, give a classical/physical interpreta-
tion of Stokes’ theorem.

solution: If ω ∈ Ω0R3, then ω is just a real-valued function on R3. Say ω = φ.
Then dω = dφ = ω∇φ, the flow form for the gradient of φ.

Given a curve C : [0, 1]→ R3, Stokes’ theorem says∫
C

∇φ · ~t =

∫
C

dφ =

∫
∂C

φ = φ(C(1))− φ(C(0)).

The flow of a gradient vector field is given by the change in potential.

If ω ∈ Ω1R3, then we can write ω = ωF for some vector field F on R3. Let
S : [0, 1]2 → R3 be a surface in R3. Then Stokes’ theorem says∫

S

(∇× F ) · ~n =

∫
S

ω∇×F =

∫
S

dωF =

∫
∂S

ωF =

∫
∂S

F · ~t.

The flux of the curl of a vector field through a surface is the circulation of the
vector field along the boundary of the surface.

If ω ∈ Ω2R3, then we can write ω = ωF for some vector field F on R3. Let
V : [0, 1]3 → R3 be a parametrized solid in R3. Then Stokes’ theorem says∫

V

(∇ · F ) dV =

∫
V

∇ · F dx ∧ dy ∧ dz =

∫
V

dωF =

∫
∂V

ωF =

∫
∂V

F · ~n.

The integral of the divergence of F over a solid is the flux of F through the
boundary of the solid.

8. What does the fact that d2 = 0 say in terms of grad, curl, and div?

solution: Let φ be a real-valued function on R3. Then

0 = d2φ = d(ωgrad(φ)) = ωcurl(grad(φ)).

Hence, curl(grad(φ)) = ∇× (∇φ) = 0.

Similarly, if F is a vector field in R3, then

0 = d2ωF = d(ωcurl(F )) = div(curl(F )) dx ∧ dy ∧ dz.

Hence, div(curl(F )) = ∇ · (∇× F ) = 0.

9. Let ω be a k-form. When is it true that dω = 0 implies there exists a (k − 1)-form,
λ such that ω = dλ? If the condition holds, what is the implication for grad, for curl,
and for div?

solution: A subset U of Rn is simply connected if each closed curve in U can be
shrunk to a point without leaving U . The plane with the origin removed is not simply



connected. If the domain of ω is simply connected, for example, if the domain is all of
Rn, then dω = 0 implies the existence of a form λ such that ω = dλ.

So suppose we have a vector field F defined on a simply connected subset of R3 (for
instance, defined on all of R3). Then if curl(F ) = 0, we know that F is a gradient
vector field, i.e., F has a potential. (Reason: curl(F ) = 0 implies 0 = ωcurl(F ) = dωF ,
which implies ω = dφ for some 0-form φ.) Similarly, if div(F ) = 0, then F has a vector
potential, i.e., F = curl(G) for some vector field G. (Reason: div(F ) = 0 implies
0 = div(F ) dx ∧ dy ∧ dz = dωF , which implies ωF = dλ for some 1-form λ. We can
then write λ = ωG for some vector field G. It follows that F = curl(G).)


