1. Find the area of the triangle in the plane with vertices (0,0), (1,0), and (1,1), weighted by the function f(x,y) = 8xy.

SOLUTION:
$$\int_{x=0}^{1} \int_{y=0}^{x} 8xy = \int_{x=0}^{1} 4x^3 = 1$$
.

2. Find the flow of the vector field $F(x,y) = (x,y^2)$ about the triangle in the plane with vertices (0,0), (1,0), and (0,1), oriented counterclockwise.

SOLUTION: The boundary of the triangle is parametrized by the three curves

$$C_1(t) = (t, 0), \quad C_2(t) = (1 - t, t), \quad C_3(t) = (0, 1 - t),$$

each with $0 \le t \le 1$. The total flow is

$$\int_{\partial\Delta} F \cdot \vec{t} = \sum_{i=1}^{3} \int_{C_{i}} F \cdot \vec{t}$$

$$= \sum_{i=0}^{3} \int_{0}^{1} F(C_{i}(t)) \cdot C'_{i}(t)$$

$$= \int_{0}^{1} F(t,0) \cdot (1,0) + \int_{0}^{1} F(1-t,t) \cdot (-1,1) + \int_{0}^{1} F(0,1-t) \cdot (0,-1)$$

$$= \int_{0}^{1} (t,0) \cdot (1,0) + \int_{0}^{1} (1-t,t^{2}) \cdot (-1,1) + \int_{0}^{1} (0,(1-t)^{2}) \cdot (0,-1)$$

$$= \int_{0}^{1} t + \int_{0}^{1} t^{2} + t - 1 + \int_{0}^{1} (-t^{2} + 2t - 1)$$

$$= \int_{0}^{1} 4t - 2$$

$$= 0.$$

Another solution, using Stokes' theorem:

$$\begin{split} \int_{\partial \Delta} F \cdot \vec{t} &= \int_{\partial \Delta} \omega_F \\ &= \int_{\Delta} d \, \omega_F \\ &= \int_{\Delta} d(x \, dx + y^2 y) \\ &= \int_{\Delta} dx \wedge dx + 2y \, dy \wedge dy \\ &= 0 \end{split}$$

Yet another solution, again using Stokes': the vector field F has a potential function $\phi = x^2/2 + y^3/3$. The flow of F along the curve is given by the change in potential. Since the curve is closed, this change in potential is 0.

3. Find the flux of F(x, y, z) = (z, 4y, x) through the surface

$$S \colon [0,1]^2 \to \mathbb{R}^3$$
$$(u,v) \mapsto (v,uv,u).$$

SOLUTION: First note that

$$S_u \times S_v = \begin{pmatrix} i & j & k \\ 0 & v & 1 \\ 1 & u & 0 \end{pmatrix} = (-u, 1, -v).$$

Then,

$$\int_{S} F \cdot \vec{n} = \int_{[0,1]^{2}} F(S(u,v)) \cdot (S_{u} \times S_{v})$$

$$= \int_{[0,1]^{2}} F(v,uv,u) \cdot (-u,1,-v)$$

$$= \int_{[0,1]^{2}} (u,4uv,v) \cdot (-u,1,-v)$$

$$= \int_{u=0}^{1} \int_{v=0}^{1} -u^{2} + 4uv - v^{2}$$

$$= \int_{u=0}^{1} -u^{2} + 2u - \frac{1}{3}$$

$$= \frac{1}{3}.$$

4. What is the area of the surface parametrized by

$$S: [0,1]^2 \to \mathbb{R}^3$$
$$(u,v) \mapsto (v,uv,u)$$

weighted by the function f(x, y, z) = xz?

SOLUTION: From the previous problem, we have $S_u \times S_v = (-u, 1, -v)$. Therefore,

$$\int_{S} f = \int_{[0,1]^{2}} f(S(u,v)) |(S_{u} \times S_{v})|$$

$$= \int_{[0,1]^{2}} f(v,uv,u) \sqrt{u^{2}+1+v^{2}}$$

$$= \int_{u=0}^{1} \int_{v=0}^{1} vu \sqrt{u^{2}+1+v^{2}}$$

$$= \int_{u=0}^{1} \left(\frac{1}{3}u\sqrt{u^{2}+1+v^{2}}\right) |_{v=0}^{1}$$

$$= \int_{u=0}^{1} \frac{1}{3}u\sqrt{u^{2}+2} - \frac{1}{3}u\sqrt{u^{2}+1}$$

$$= \left(\frac{1}{15}(2+u^{2})^{5/2} - \frac{1}{15}(1+u^{2})^{5/2}\right)_{u=1}^{1}$$

$$= \frac{1}{15}(3^{5/2}-1).$$

5. Find the flux of $F(x, y, z) = (y^2, \cos(xz), x^2 + 3z)$ through the unit sphere centered at the origin.

SOLUTION: First note that

$$\operatorname{div} F = D_1 y^2 + D_2 \cos(xz) + D_3(x^2 + 3z) = 3.$$

Then, by Stokes' theorem,

$$\int_{\text{sphere}} F \cdot \vec{n} = \int_{\text{solid ball}} \operatorname{div} F = 3(4\pi/3) = 4\pi.$$

6. What is the length of the curve $C(t)=(t,t^2)$ for $0 \le t \le 1$, weighted by f(x,y)=x?

SOLUTION:

$$\int_C f = \int_0^1 f(C(t)) |C'(t)| dt$$

$$= \int_0^1 f(t, t^2) |(1, 2t)| dt$$

$$= \int_0^1 t \sqrt{1 + 4t^2} dt$$

$$= \frac{1}{12} (1 + 4t^2)^{3/2} |_{t=0}^1$$

$$= \frac{1}{12} (5^{3/2} - 1).$$

7. What is the flow of $F(x,y)=(-y,y^3)$ around the circle $C(t)=(\cos(t),\sin(t))$ for $0\leq t\leq 2\pi$?

SOLUTION:

$$\int_{C} F \cdot \vec{t} = \int_{0}^{2\pi} F(C(t)) \cdot C'(t)$$

$$= \int_{0}^{2\pi} F(\cos(t), \sin(t)) \cdot (-\sin(t), \cos(t)) dt$$

$$= \int_{0}^{2\pi} (-\sin(t), \sin^{3}(t)) \cdot (-\sin(t), \cos(t)) dt$$

$$= \int_{0}^{2\pi} \sin^{2}(t) + \sin^{3}(t) \cos(t) dt$$

$$= \int_{0}^{2\pi} \frac{1 - \cos(2t)}{2} + \sin^{3}(t) \cos(t) dt$$

$$= \left(\frac{t}{2} - \frac{\sin(2t)}{4} + \frac{1}{4}\sin^{4}(t)\right) \Big|_{t=0}^{2\pi}$$

$$= \pi.$$

It is a lot less work to use Stokes' theorem, instead:

$$\int_{C} F \cdot \vec{t} = \int_{C} \omega_{F}$$

$$= \int_{\text{disk}} d\omega_{F}$$

$$= \int_{\text{disk}} d(-y \, dx + y^{3} \, dy)$$

$$= \int_{\text{disk}} -dy \wedge dx + 3y^{2} \, dy \wedge dy$$

$$= \int_{\text{disk}} dx \wedge dy$$

$$= \operatorname{area}(\text{disk})$$

$$= \pi.$$