Determinants Math 212

The determinant of an $n \times n$ matrix M is the unique multilinear, alternating function, det, of the rows of the matrix such that det $I_n = 1$ (where I_n is the $n \times n$ identity matrix). All of the properties of the determinant follow from those properties. Multilinear means that the function is linear with respect to each argument. Thus, if r_1, \ldots, r_n are the row vectors (elements of \mathbb{R}^n), r'_i is another row vector, and $s \in \mathbb{R}$, we have

$$\det(r_1, \dots, r_{i-1}, s \, r_i + r'_i, r_{i+1}, \dots, r_n) = s \, \det(r_1, \dots, r_{i-1}, r_i, r_{i+1}, \dots, r_n) + \det(r_1, \dots, r_{i-1}, r'_i, r_{i+1}, \dots, r_n).$$

Alternating means that the determinant is zero if two of its arguments are equal:

$$\det(r_1,\ldots,r_n)=0$$

if $r_i = r_j$ for some $i \neq j$. A consequence is that swapping two arguments causes the determinant to change just by a sign:

$$\det(r_1,\ldots,r_i,\ldots,r_i,\ldots,r_n) = -\det(r_1,\ldots,r_i,\ldots,r_i,\ldots,r_n).$$

(Hint for a proof: in $\det(r_1, \ldots, r_i, \ldots, r_j, \ldots, r_n)$ replace both r_i and r_j by $r_i + r_j$. This determinant must be 0. Now expand using multilinearity.) Another consequence is that the determinant does not change if a multiple of one row is added to another. For ease of typesetting, we will show this for the first two rows:

$$\det(r_1 + s \, r_2, r_2, \dots, r_n) = \det(r_1, r_2, \dots, r_n) + s \, \det(r_2, r_2, r_3, \dots, r_n)$$
$$= \det(r_1, r_2, \dots, r_n) + 0 = \det(r_1, \dots, r_n).$$

Example. Here we compute the determinant of a 2×2 matrix using the fact that the determinant is a multilinear alternating mapping with value 1 on the identity matrix.

$$\det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \det((a,b),(c,d))$$

$$= \det(a e_1 + b e_2, c e_1 + d e_2)$$

$$= a \det(e_1, c e_1 + d e_2) + b \det(e_2, c e_1 + d e_2)$$

$$= ac \det(e_1, e_1) + ad \det(e_1, e_2) + bc \det(e_2, e_1) + bd \det(e_2, e_2)$$

$$= 0 + ad \det(e_1, e_2) + bc \det(e_2, e_1) + 0$$

$$= ad \det(e_1, e_2) - bc \det(e_1, e_2)$$

$$= ad \det\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - bc \det\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= ad \cdot 1 - bc \cdot 1 = ad - bc.$$

Facts.

- 1. Define the transpose, M^t of M by $M^t_{ij} := M_{ji}$. Then $\det M^t = \det M$.
- 2. The determinant is the unique multilinear alternating function on the *columns* of a matrix.
- 3. The determinant may be calculated by "expanding" along any row or column.
- 4. det $M = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) M_{1\sigma(1)} \cdots M_{n\sigma(n)}$, where S_n is the collection of all permutations of $(1, \ldots, n)$ and σ gives the sign of the permutation (i.e., 1 if the permutation is formed by an even number of flips and -1 if it is formed by an odd number of flips).
- 5. The determinant gives the signed volume of the parallelepiped spanned by the rows (or by the columns) of the matrix.