HW 10 for Math 212 Due Friday, April 26

- 1. Find the surface area of $S(u, v) = (u, v, u^2 + 2v, u^2 2v)$ for $u, v \in [0, 1]$. (Set up the integral.)
- 2. Let $F = (F_1, F_2, F_3)$ be a vector field in \mathbb{R}^3 , and let $\phi \colon \mathbb{R}^3 \to \mathbb{R}$.
 - (a) Let $\phi \colon \mathbb{R}^3 \to \mathbb{R}$. Show that $\operatorname{curl}(\operatorname{grad}(\phi)) = 0$ in two ways: (i) by direct calculation using the classical definitions, and (ii) by making the connection with differential forms explicit and using the fact that $d^2 = 0$.
 - (b) For a vector field $F = (F_1, F_2, F_3)$ on \mathbb{R}^3 show $\operatorname{div}(\operatorname{curl}(F)) = 0$ in two ways as in the previous problem.
- 3. For a differential k-form ω defined on a "simply connected" (= no holes) open subset of \mathbb{R}^n , it turns out the $d\omega = 0$ if and only if there exists a (k-1)-form λ such that $\omega = d\lambda$. By carefully making the connection with differential forms explicit, show that for a vector field F defined on a simply connected open subset of \mathbb{R}^3
 - (a) $\operatorname{curl} F = 0$ implies F has a potential;
 - (b) $\operatorname{div} F = 0$ implies F has a vector potential G (meaning $F = \operatorname{curl} G$).
- 4. (a) Let $F = (F_1, F_2, F_3)$ be a vector field on \mathbb{R}^3 . Prove that

$$\nabla \times (\nabla \times F) = \nabla(\nabla \cdot F) - \nabla^2 F.$$

Note that $\nabla^2 := \nabla \cdot \nabla = (D_1, D_2, D_3) \cdot (D_1, D_2, D_3) = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$. Hence,

$$\nabla^2 F = \left(\tfrac{\partial^2 F_1}{\partial x^2} + \tfrac{\partial^2 F_1}{\partial y^2} + \tfrac{\partial^2 F_1}{\partial z^2}, \tfrac{\partial^2 F_2}{\partial x^2} + \tfrac{\partial^2 F_2}{\partial y^2} + \tfrac{\partial^2 F_2}{\partial z^2}, \tfrac{\partial^2 F_3}{\partial x^2} + \tfrac{\partial^2 F_3}{\partial y^2} + \tfrac{\partial^2 F_3}{\partial z^2} \right),$$

the Laplacian of F.

(b) Suppose that $\mathbb{J} = 0$ and $\rho = 0$ in Maxwell's equations. Use Maxwell's equations and the identity you just established to show that the magnetic field, \mathbb{B} , satisfies the wave equation in three dimensions:

$$\nabla^2 \mathbb{B} = \frac{1}{v^2} \frac{\partial^2 \mathbb{B}}{\partial t^2},$$

for some real number v.

- 5. (a) Show that the divergence of a gradient vector field on \mathbb{R}^3 is given by the Laplacian of the potential.
 - (b) Show that Maxwell's equations imply that in the absence of a time-varying magnetic field, that (i) the electric field has a potential, and (ii) the Laplacian of the potential is proportional to the charge density. [Note: the *electrostatic potential* is by definition the negative of the potential in part (i).]
- 6. Let $\mathbb{B}(x,y,z)=(x^2,-y,z)$. Why can't \mathbb{B} be a magnetic field?
- 7. Here is a "proof" that magnetism does not exist. One of Maxwell's equations says that $\nabla \cdot \mathbb{B} = 0$. On \mathbb{R}^n we always have $d\omega = 0$ for a k-form ω if and only if $\omega = d\lambda$ for some (k-1)-form λ . Hence, there is a vector field \mathbb{A} such that $\mathbb{B} = \nabla \times \mathbb{A}$. From the divergence theorem, we get $\iint_S \mathbb{B} = \iiint_V \nabla \cdot \mathbb{B} = 0$ for any solid V with boundary S. By the classical Stokes' theorem, it follows that $0 = \iiint_S \mathbb{B} = \iiint_S \nabla \times \mathbb{A} = \int_C \mathbb{A}$, where C is the boundary of S. Hence, \mathbb{A} is conservative, i.e., its flow along all closed loops is zero. Therefore, \mathbb{A} has a potential function: $\mathbb{A} = \nabla \phi$. It follows that

$$\mathbb{B} = \nabla \times \mathbb{A} = \nabla \times (\nabla \phi) = 0.$$

Therefore, all magnetic fields are zero. What's wrong?

8. An electric field is given by $\mathbb{E}(x, y, z) = (x, y, 0)$. Use Maxwell's equations to determine the amount of charge in the half-cylinder of length 2s and radius r shown below:

