- 1. Let $D = [0,1]^2$, and let $S: D \to \mathbb{R}^2$ be a parametrization of a solid region in the plane . Let $F(x,y) = (F_1(x,y), F_2(x,y))$ be a vector field in the plane.
 - (a) Prove Green's theorem:

$$\oint_{\partial S} F_1 dx + F_2 dy = \iint_S \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dx \wedge dy.$$

- (b) Name a simple condition on F so that its circulation about the boundary will give the area enclosed by S.
- (c) Give an example of a vector field F having this property.
- (d) As a simple test case, calculate the area of a triangle with vertices (0,0), (a,0), and (0,b) by calculating the flow of your F along edges of the triangle.
- 2. One may parametrize the surface of a sphere of radius r by

$$S(\theta, \psi) = (r\cos(\theta)\sin(\psi), r\sin(\theta)\sin(\psi), r\cos(\psi))$$

with $0 \le \theta \le 2\pi$ and $0 \le \psi \le \pi$.

- (a) Calculate $|S_{\theta} \times S_{\psi}|$.
- (b) Calculate the surface area of the sphere.
- 3. Let $S(u, v) = (u, v, u^2 v^2)$ for $(u, v) \in D = [0, 1]^2$, let $C(t) = (t, t^2, t^3)$ for $t \in I = [0, 1]$, and let $F(x, y, z) = (y^2 + z, x^2 + y^2, x)$.
 - (a) Calculate the flux of F through S in two ways: (i) converting F to a 2-form and integrating that form over S, and (ii) using the formula $\int_S F \cdot \vec{n} = \int_D (F \circ S) \cdot (S_u \times S_v)$.
 - (b) Calculate the flow of F around C in two ways: (i) converting F to a 1-form and integrating that form over C, and (ii) using the formula $\int_C F \cdot \vec{t} = \int_I (F \circ C) \cdot C'$.
- 4. If $\omega = d\lambda$ for some form λ , then $d\omega = 0$. This problem shows that the converse does not hold. Let

$$\omega = \frac{x \, dy - y \, dx}{x^2 + y^2} = \frac{x}{x^2 + y^2} \, dy - \frac{y}{x^2 + y^2} \, dx.$$

- (a) Show that $d\omega = 0$.
- (b) Show that $\omega \neq d\lambda$ for any function (0-form) λ . (Hint: show that $\int_{\gamma} \omega \neq 0$ for the closed curve $\gamma(t) = (\cos(t), \sin(t))$ with $0 \leq t \leq 2\pi$. Stokes' theorem implies that if $\omega = d\lambda$, then $\int_{\gamma} \omega = 0$.)

- 5. Let $D = \{(u, v) \in \mathbb{R}^2 : u^2 + v^2 \le 1\}$, the closed unit disk in the plane. Consider the surface $S: D \to \mathbb{R}^3$ with $S(u, v) = (u, v, -u^2 v^2 + 1)$ and the vector field F(x, y, z) = (-y, x, z).
 - (a) Calculate $S_u \times S_v$.
 - (b) Sketch the image of S and draw $S_u \times S_v$ at some point. (Make sure you get the direction—the sign—correct.)
 - (c) Calculate the flux of the curl of F through S.
 - (d) Parametrize the boundary of the image of S. (Do not worry about the formal definition of the boundary. You will want to get the direction right so that the right-hand rule will point in the direction of the normal vector to S you already calculated.)
 - (e) Calculate the circulation (i.e., flow) of F along this boundary.