1. What is the volume of the cored apple:

$$V := \{(x, y, z) : r^2 \le x^2 + y^2 + z^2 \le R^2\}$$

where 0 < r < R?

- 2. Let $\Phi(u,v) = (u+v,u^2,4v)$ and $\omega = z\,dx \wedge dy + y\,dx \wedge dz$. Compute the pullback $\Phi^*\omega$ and express it in standard form.
- 3. Let $\omega = f \, dx + g \, dy$ where $f(x,y) = \phi(x)$ and $g(x,y) = \psi(y)$, i.e., f depends only on x and g depends only on y. Let $\gamma \colon [a,b] \to \R^2 be any closed curve, i.e., $\gamma(a) = \gamma(b)$. Show that $\int_{\gamma} \omega = 0$.
- 4. (a) Let $\Phi:[0,1]^2\to\mathbb{R}^n$ be a 2-surface in \mathbb{R}^n . Show that $\partial^2\Phi=0$ directly from the definition of the boundary map. (In fact, $\partial^2=0$ for k-surfaces in general, but you are just being asked to show this for 2-surfaces, to ease notation. A hint for the solution: $\partial^2\Phi$ will consist of sums of functions of the form $\Phi\circ\Delta^2_{i,\alpha}\circ\Delta^1_{1,\beta}$. The domain of all of these functions is \mathbb{R}^0 , so to specify these functions, you need to tell me where the single point () comprising \mathbb{R}^0 is sent in each case.)
 - (b) Let C be a k-chain in \mathbb{R}^n , and let $\omega \in \Omega^{k-2}\mathbb{R}^n$. Since direct calculation shows that $\partial^2 = 0$, we have that $\int_{\partial^2 C} \omega = 0$. Instead, without assuming $\partial^2 = 0$, prove $\int_{\partial^2 C} \omega = 0$ using Stokes' theorem.
- 5. Let

$$\Phi: [0,1]^2 \to \mathbb{R}^3$$

 $(u,v) \mapsto (u,v,u^2+v^2),$

and let $\omega = (x^2 - z) dx + (x + y) dy + (y + z) dz$.

- (a) Compute each $\Phi \circ \Delta^2_{i,\alpha}$.
- (b) Verify Stokes' theorem: $\int_{\partial \Phi} \omega = \int_{\Phi} d\omega$.

(Don't forget the next page.)

6. (a) Let

$$\Phi: [0,1] \to \mathbb{R}^3$$
$$t \mapsto (t, t^2, t^3),$$

and let $\omega = xy + z^2 \in \Omega^0 \mathbb{R}^3$, a 0-form in \mathbb{R}^3 . Verify Stokes' theorem.

(b) Let f be an \mathbb{R} -valued function of one variable. Let $a \leq b$ and define $\Phi(t) = a + (b-a)t$ for $0 \leq t \leq 1$ (so that Φ parametrizes the interval [a,b]). Let $\omega = f \in \Omega^0 \mathbb{R}$. Verify Stokes' theorem by appealing to a result from one-variable calculus. (Make sure to name the relevant result.)