
Math 201 lecture for Wednesday, Week 13

Cross product

Let v1, . . . , vn−1 be a set of n− 1 vectors in Rn. Define the function

χ : Rn → R
x 7→ det(x, v1, . . . , vn−1).

where we think of the determinant as a function of the rows x, v1, . . . , vn−1 of a matrix, as usual.
The 1× n matrix representing χ has the form (a1 · · · an). We define the cross product to be the row
vector

v1 × · · · × vn−1 := (a1, . . . ., an).

The mapping χ is just dot product with the cross product:

χ(x) = (a1 · · · an)

 x1
...
xn

 = (a1, . . . , an) · x = (v1 × · · · × vn−1) · x.

matrix multiplication dot product

Theorem. (Properties of the cross product.)

(a) The cross product is a multilinear alternating function of v1, . . . , vn−1.

(b) Swapping vi with vj for i 6= j changes the sign of the cross product.

(c) Adding a scalar multiple of vi to vj for some i 6= j does not change the cross product.

(d) The cross product is orthogonal to the subspace spanned by v1, . . . , vn−1.

(e) The length of the cross product is the volume of the parallelepiped spanned by v1, . . . , vn−1.

(f) Given w ∈ Rn, the volume of the parallelepiped spanned by w and v1, . . . , vn−1 is |w · (v1 ×
· · · × vn−1)|.

(g) Let A be the (n− 1)× n matrix with rows v1, . . . , vn−1, and let A(j) be the (n− 1)× (n− 1)
matrix formed by removing the j-th column of A. Then

v1 × · · · × vn−1 =
(

det(A(1)),−det(A(2)),det(A(3)), . . . , (−1)n−1 det(A(n))
)
.

Proof. Properties (a)–(c) follow immediately from the properties of det(x, v1, . . . , vn−1). For prop-
erty (d), note that

(v1 × · · · × vn−1) · vi = det(vi, v1, . . . , vn−1) = 0

since vi is a repeated row.

For property (e), let P be the parallelepiped spanned by v1, . . . , vn−1, and let Q be the parallelepiped
spanned by v1×· · ·×vn−1 and v1, . . . , vn−1. Since v1×· · ·×vn−1 is perpendicular to P , the volume
of Q is given by the volume of the base, P , times the height ‖v1 × · · · × vn−1‖:

vol(Q) = ‖v1 × · · · × vn−1‖ vol(P ). (1)

1



The volume of Q is the absolute value of the determinant of its spanning vectors. Therefore,

vol(Q) = |det(v1 × · · · × vn−1, v1, . . . , vn−1)|
= |χ(v1 × · · · × vn−1, v1, . . . , vn−1)|
= (v1 × · · · × vn−1) · (v1 × · · · × vn−1)

= ‖v1 × · · · × vn−1‖2.

Combining this with equation (1) yields the result:

‖v1 × · · · × vn−1‖ = vol(P ).

For property (f), note that

|w · (v1 × · · · × vn−1)| = |det(w, v1, . . . , vn−1)|,

which gives the volume of the parallelepiped in question.

Property (g) follows by expanding the determinant defining χ along its first row:

χ(x) = det(x, v1, . . . , vn−1)

= det(A(1)x1 − det(A(2))x2 + · · ·+ (−1)n−1 det(A(n))xn

= (det(A(1),−det(A(2)), . . . , (−1)n−1 det(A(n))) · (x1, . . . , xn).

�

The cross product in R3. The cross product is most well-known in the case n = 3. Here, we have
vectors x = (x1, x2, x3) and y = (y1, y2, y3). The cross product is

x× y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1) ∈ R3.

The usual mnemonic is

x× y = det

 i j k
x1 x2 x3
y1 y2 y3

 = (x2y3 − x3y2)i− (x1y3 − x3y1)j + (x1y2 − x2y1)k,

where i = e1 = (1, 0, 0), j = e2 = (0, 1, 0), and k = e3 = (0, 0, 1). We get exactly the formula given
by part (g) of the Theorem. The above is only a mnemonic since we have not defined a determinant
in the case where the entries are vectors of various dimensions.

The cross product here is perpendicular to the parallelogram spanned by x and y, and its length is

‖x× y‖ = ‖x‖‖y‖ sin(θ)

where θ is the angle between x and y. This last formula gives the area of the parallelogram spanned
by x and y:
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θ

‖x‖

x

y

‖y‖ sin(θ)

Example. Find an equation for the plane through the points p = (1, 2, 3), q = (1, 0,−2), and r =
(0, 7, 2).

solution: To find a vector perpendicular to the plane, we take the cross product of q−p and r−p.
Below is a picture that illustrates the geometry (with no attempt to get the actual coordinates
correct!). The sides of the base parallelogram are spanned by the vectors q − p and r − p.

p

q

r(q − p)× (r − p)

Compute:

(q − p)× (r − p) = (0,−2,−5)× (−1, 5,−1)

= det

 i j k
0 −2 −5
−1 5 −1


= 27 i + 5 j− 2k

= (27, 5,−2).

To double-check, note that the cross product is perpendicular to q − p and r − p:

(0,−2,−5) · (27, 5,−2) = 0 and (−1, 5,−1) · (27, 5,−2) = 0.

The set of all points (x, y, z) perpendicular to the cross product is the plane defined by

(27, 5,−2) · (x, y, z) = 0,

i.e., the plane with equation
27x+ 5y − 2z = 0.
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This plane passes through the origin, (0, 0, 0). We want the translation of this plane that passes
through p. (It will automatically then pass through q and r. So we could choose either q or r for
this requirement, instead.) The equation of this translated plane will have the form

27x+ 5y − 2z = c.

for some constant c. Plug in p (or q or r) to solve for c:

c = 27(1) + 5(2)− 2(3) = 31.

So the equation of the plane is
27x+ 5y − 2z = 31.

(Check that the equation is satisfied by p, q, and r!)

Parametric equation of the plane. As we saw earlier in the semester, we can parametrize this plane
by

f(s, t) = p+ s(q − p) + t(r − p)
= (1, 2, 3) + s(0,−2,−5) + t(−1, 5,−1)

= (1− t, 2− 2s+ 5t, 3− 5s− t).

Thus, we get the function:

f : R2 → R3

(s, t) 7→ (1− t, 2− 2s+ 5t, 3− 5s− t).

The image of f is the plane passing through p, q, and r. One may check that if we let

x = 1− t, y = 2− 2s+ 5t, z = 3− 5s− t,

then 27x+ 5y − 2z = 31, i.e., the point satisfies the equation for the plane.
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