Math 201 lecture for Monday, Week 11

Walks on graphs

We have devoted a lot of energy to the problem of diagonalizing a matrix. One major motivation
for diagonalization is that it makes taking powers of a matrix easier. Explicitly, suppose that A €
M, «n(F) is diagonalizable. So there exists a matrix P such that

P7'AP = D = diag(\, ..., \n).
It is easy to take powers of a diagonal matrix: DY = diag(\{,...,\%). Here is the important trick:
D' = (P'AP)*
= (P7'AP)(P~'AP)(P7'AP).--(P"'AP)(P'AP)
=P APP YHYAPP HYAPPY) ... (PP HAP
=P AP

Therefore,
A= PD'*P~1 = Pdiag(\{,..., A\ )P~ L.

In general, there will be many fewer arithmetic operations required on the right-hand side of this
equation than on the left-hand side.

This lecture will consider one application of this idea.

Walks in graph. A graph (or network) consists of vertices connected by edges. Here is an example
with 4 vertices connected by 5 edges:
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The diamond graph.

A walk of length ¢ in a graph is a sequence of vertices ugu ... uy where u;_1 is connected to u; for
i=1,...,£. So the length is the number of edges traversed. In our example, the following are walks
from v to vy4:

v1vy  and  V1vV3V4.

The first has length 1 and the second has length 3. We are interested in counting the number of
closed walks between vertices.



Definition. Let G be a graph with vertices vy, ...,v,. The adjacency matriz of G is the n x n
matrix A = A(G) defined by

A= 1 if there is an edge connecting v; and v;
K 0 otherwise.

For example, the adjacency matrix of the diamond graph is

U3
L /0 1 0 1
vl 1 0 1 1
v 2 A= .l o 1 0 1
wu V1 1 10

V1

Theorem. Let A be the adjacency matrix for a graph G with vertices vy, ...,v,, and let £ € Z > 0.
Then then number of walks of length ¢ from v; to v; is (A%);;.

Proof. Homework. O

Example. Consider the diamond graph and its adjacency matrix A, displayed above. Then

01 0 1 2 1 2 1 2 5 2 5
101 1 1 3 1 2 5 4 5 5

0 __ _ 2 3 _

A_I4’A_0101’A_2121"4_2525
1110 1 21 3 5 5 5 4

The highlighted entries in the matrix say there is 1 path of length 2 from vy to vs and there are 4
paths of length 3 from vy to itself. Can you find them? (The answer appears at the end of this
lecture.)

So to count the number of walks, we need to compute powers of the adjacency matrix. Here is some
good news:

Theorem. If A is an n x n symmetric matrix (A = A') over the real numbers, then it is diagonal-
izable over R.

Proof. We may prove this later in the semester. (To look it up online, search for the “spectral
theorem”, which is usually stated for the more general class of Hermitian matrices. Over the real
numbers, the Hermitian matrices are exactly the symmetric matrices.) O

This means that we can find a matrix P such that P~'AP = D, where D is the diagonal matrix of
the eigenvalues. Then AY = PD‘P~1. So we can find a nice closed form for the number of walks of
length ¢ between any two vertices as a linear expression in the ¢-th powers of the eigenvalues of A.
If the eigenvalues are A, ..., \,, the equation A* = PD*P~! immediately implies that for each pair



of vertices v; and v; there exist real numbers c1, ..., c,, independent of ¢, such that the number of
closed walks of length ¢ from v; to v; is

PN RERE o
The special case of closed walks is particularly nice.
Definition. A walk is closed if it begins and ends at the same vertex.

Definition. Let A be any n x n matrix. Then the trace of A is the sum of its diagonal entries:

n

Proposition. Let A be the adjacency matrix of a graph GG. Then the number of closed walks in G
of length £ is tr(A").

Proof. For each i = 1,...,n, the number of closed walks from v; to v; is (Ae)“‘. Summing over @
gives the total number of closed walks. O

Proposition. Let A be any n x n matrix. Then the trace of A is the sum of its eigenvalues, each
counted according to its (algebraic) multiplicity.

Proof. Homework. O

Corollary. Let A be the adjacency matrix of a graph G with n vertices, and let A1,..., A, € R be
its list of (not necessarily distinct) eigenvalues. Then the number of closed walks in G of length ¢

is 35, X

Proof. The number of closed walks of length £ is tr(A?), which is the sum of the eigenvalues of A*.
By homework (an easy induction argument), if A is an eigenvalue of A, then A’ is an eigenvalue of A
with unchanged eigenspace. It follows that the eigenvalues for A® are \¢, ... \¢. O

Example. Let A be the adjacency matrix of the diamond graph G. The characteristic polynomial
of Ais
det(A — xly) = 2* — 522 —da = 2(x + 1)(2? — x — 4).

Using the quadratic equation, we find the eigenvalues for A:

14+v17 1—-+17
’ 2 2

Therefore, the number of closed walks in G of length ¢ is

)4 )4
w(l) = (0) + (-1)* + <1+2‘/ﬁ> + (1‘/ﬁ> :

0,-1

2

where

) = 1 ifl=0
o ife>o.



The following table gives the number of closed walks for £ =0,1,...,6:

¢ 01 2 3 4 5 6
w(l)[4 0 10 12 50 100 298

Exercise. The complete graph, K,,, has vertices 1,...,n and an edge between every pair of vertices.
How many closed walks are there in K,, of lenght ¢?

Questions.

(a) How would you generalize today’s ideas to the case of a directed graph (in which the edges have
directions)?

(b) How would you generalize today’s ideas to the case in which the edges have weights? (A special
case would be to let the weight of edge (u, v) be the probability that the edge is traversed given
that the starting point is u. Another possibility is to think of the weight as a cost for traveling
across the edge.)

Answer to example on page 2: vyv4v3 has length 2 and the following have length 3: vovzv4vs,
V2V4UV3V2, V2V1V4V2, and VU4V V2.



