
Math 201 lecture for Monday, Week 11

Walks on graphs

We have devoted a lot of energy to the problem of diagonalizing a matrix. One major motivation
for diagonalization is that it makes taking powers of a matrix easier. Explicitly, suppose that A ∈
Mn×n(F ) is diagonalizable. So there exists a matrix P such that

P−1AP = D = diag(λ1, . . . , λn).

It is easy to take powers of a diagonal matrix: D` = diag(λ`1, . . . , λ
`
n). Here is the important trick:

D` = (P−1AP )`

= (P−1AP )(P−1AP )(P−1AP ) · · · (P−1AP )(P−1AP )

= P−1A(PP−1)A(PP−1)A(PP−1) · · · (PP−1)AP

= P−1A`P.

Therefore,
A` = PD`P−1 = P diag(λ`1, . . . , λ

`
n)P−1.

In general, there will be many fewer arithmetic operations required on the right-hand side of this
equation than on the left-hand side.

This lecture will consider one application of this idea.

Walks in graph. A graph (or network) consists of vertices connected by edges. Here is an example
with 4 vertices connected by 5 edges:

v4 v2

v3

v1

The diamond graph.

A walk of length ` in a graph is a sequence of vertices u0u1 . . . u` where ui−1 is connected to ui for
i = 1, . . . , `. So the length is the number of edges traversed. In our example, the following are walks
from v1 to v4:

v1v4 and v1v2v3v4.

The first has length 1 and the second has length 3. We are interested in counting the number of
closed walks between vertices.
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Definition. Let G be a graph with vertices v1, . . . , vn. The adjacency matrix of G is the n × n
matrix A = A(G) defined by

Aij =

{
1 if there is an edge connecting vi and vj

0 otherwise.

For example, the adjacency matrix of the diamond graph is


0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

 .

v1 v2 v3 v4

v1

v2

v3

v4

A =v4 v2

v3

v1

Theorem. Let A be the adjacency matrix for a graph G with vertices v1, . . . , vn, and let ` ∈ Z ≥ 0.
Then then number of walks of length ` from vi to vj is (A`)ij .

Proof. Homework.

Example. Consider the diamond graph and its adjacency matrix A, displayed above. Then

A0 = I4, A =


0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

 , A2 =


2 1 2 1
1 3 1 2
2 1 2 1
1 2 1 3

 , A3 =


2 5 2 5
5 4 5 5
2 5 2 5
5 5 5 4

 .

The highlighted entries in the matrix say there is 1 path of length 2 from v2 to v3 and there are 4
paths of length 3 from v2 to itself. Can you find them? (The answer appears at the end of this
lecture.)

So to count the number of walks, we need to compute powers of the adjacency matrix. Here is some
good news:

Theorem. If A is an n× n symmetric matrix (A = At) over the real numbers, then it is diagonal-
izable over R.

Proof. We may prove this later in the semester. (To look it up online, search for the “spectral
theorem”, which is usually stated for the more general class of Hermitian matrices. Over the real
numbers, the Hermitian matrices are exactly the symmetric matrices.)

This means that we can find a matrix P such that P−1AP = D, where D is the diagonal matrix of
the eigenvalues. Then A` = PD`P−1. So we can find a nice closed form for the number of walks of
length ` between any two vertices as a linear expression in the `-th powers of the eigenvalues of A.
If the eigenvalues are λ1, . . . , λn, the equation A` = PD`P−1 immediately implies that for each pair
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of vertices vi and vj there exist real numbers c1, . . . , cn, independent of `, such that the number of
closed walks of length ` from vi to vj is

c1λ
`
1 + · · ·+ cnλ

`
n.

The special case of closed walks is particularly nice.

Definition. A walk is closed if it begins and ends at the same vertex.

Definition. Let A be any n× n matrix. Then the trace of A is the sum of its diagonal entries:

tr(A) =

n∑
i=1

Aii.

Proposition. Let A be the adjacency matrix of a graph G. Then the number of closed walks in G
of length ` is tr(A`).

Proof. For each i = 1, . . . , n, the number of closed walks from vi to vi is (A`)ii. Summing over i
gives the total number of closed walks.

Proposition. Let A be any n × n matrix. Then the trace of A is the sum of its eigenvalues, each
counted according to its (algebraic) multiplicity.

Proof. Homework.

Corollary. Let A be the adjacency matrix of a graph G with n vertices, and let λ1, . . . , λn ∈ R be
its list of (not necessarily distinct) eigenvalues. Then the number of closed walks in G of length `
is
∑n

i=1 λ
`
i .

Proof. The number of closed walks of length ` is tr(A`), which is the sum of the eigenvalues of A`.
By homework (an easy induction argument), if λ is an eigenvalue of A, then λ` is an eigenvalue of A`

with unchanged eigenspace. It follows that the eigenvalues for A` are λ`1, . . . , λ
`
n.

Example. Let A be the adjacency matrix of the diamond graph G. The characteristic polynomial
of A is

det(A− xI4) = x4 − 5x2 − 4x = x(x+ 1)(x2 − x− 4).

Using the quadratic equation, we find the eigenvalues for A:

0,−1,
1 +
√

17

2
,

1−
√

17

2
.

Therefore, the number of closed walks in G of length ` is

w(`) = (0)` + (−1)` +

(
1 +
√

17

2

)`

+

(
1−
√

17

2

)`

,

where

(0)` =

{
1 if ` = 0

0 if ` > 0.
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The following table gives the number of closed walks for ` = 0, 1, . . . , 6:

` 0 1 2 3 4 5 6
w(`) 4 0 10 12 50 100 298

Exercise. The complete graph, Kn, has vertices 1, . . . , n and an edge between every pair of vertices.
How many closed walks are there in Kn of lenght `?

Questions.

(a) How would you generalize today’s ideas to the case of a directed graph (in which the edges have
directions)?

(b) How would you generalize today’s ideas to the case in which the edges have weights? (A special
case would be to let the weight of edge (u, v) be the probability that the edge is traversed given
that the starting point is u. Another possibility is to think of the weight as a cost for traveling
across the edge.)

Answer to example on page 2: v2v4v3 has length 2 and the following have length 3: v2v3v4v2,
v2v4v3v2, v2v1v4v2, and v2v4v1v2.
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