
Math 201 lecture for Friday, Week 11

Lengths, distances, components, angles

Definition. Let (V, 〈 , 〉) be an inner product space over F = R or C. The norm or length of x ∈ V
is

‖x‖ =
√
〈x, x〉 ∈ R≥0.

Two vectors x, y ∈ V are orthogonal or perpendicular if 〈x, y〉 = 0. A unit vector is a vector of
norm 1: so x ∈ V is a unit vector if ‖x‖ = 1, which is equivalent to 〈x, x〉 = 1.

Examples of norms.

• V = Rn, 〈x, y〉 = x · y, the usual dot product. Then for x ∈ Rn,

‖x‖ =
√
x21 + · · ·+ x2n.

• V = Cn, 〈x, y〉 = x · y, the usual dot product on Cn. Then for z ∈ Cn,

‖z‖ =
√
z1z1 + · · ·+ znzn

=
√
|z1|2 + · · ·+ |zn|2.

If zj ∈ C is written as zj = xj + iyj with xj , yj ∈ R, then |zj |2 = x2j + y2j . So then

‖z‖ =
√
x21 + y21 + · · ·+ x2n + y2n.

Thus, if we identify Cn with R2n via the isomorphism

(x1 + iy1, . . . , xn + iyn)→ (x1, y1, . . . , xn, yn),

then the isomorphism preserves norms.

Proposition. (Pythagorean theorem) Let (V, 〈 , 〉) be an inner product space over F = R or C, and
let x, y ∈ V be perpendicular. Then

‖x‖2 + ‖y‖2 = ‖x+ y‖2.

~0 x‖x‖

‖y‖

y
x+ y

‖x
+
y‖

Proof. Since x and y are perpendicular, we have 〈x, y〉 = 0. It follows that 〈y, x〉 = 〈x, y〉 = 0, too.
Therefore,

‖x+ y‖2 = 〈x+ y, x+ y〉
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= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉
= 〈x, x〉+ 〈y, y〉
= ‖x‖2 + ‖y‖2.

Suppose we are given two vectors x, y in an inner product space. A useful geometric operation is to
break x into two parts, one of which lies along the vector y. Given any number c, the vector cy lies
along y and we can evidently write x as the sum of two vectors: x = (x − cy) + cy). In addition,
though, we would like to require, by adjusting c, that the vector x− cy is perpendicular to y. The
picture in R2 would be:

y

x

cy~0

We can calculate the required scalar c:

〈x− cy, y〉 = 0⇐⇒ 〈x, y〉 − c〈y, y〉 = 0⇐⇒ c =
〈x, y〉
〈y, y〉

⇐⇒ c =
〈x, y〉
‖y‖2

,

which makes sense as long as y 6= 0.

Definition. Let (V, 〈 , 〉) be an inner product space over F = R or C, and let x, y ∈ V with y 6= 0.
The component of x along y is the scalar

c =
〈x, y〉
〈y, y〉

=
〈x, y〉
‖y‖2

.

The orthogonal projection of x to y is the vector cy.

Example. Let x ∈ V = Rn or Cn, and let ej be the j-th standard basis vector. Then

〈x, ej〉
〈ej , ej〉

=
xj
1

= xj .

Thus, xj is the component of x along ej , and xjej is the projection of x to ej .

Example. Let x = (3, 2) and y = (5, 0) = 5e1 in R2 with the usual inner product. Then the
component of x along y is

〈x, y〉
〈y, y〉

=
(3, 2) · (5, 0)

(5, 0), (5, 0)
=

15

25
=

3

5
.

So the projection of x to y is

cy =
3

5
(5, 0) = (3, 0),

as expected.
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Proposition. Let (V, 〈 , 〉) be an inner product space over F = R or C. Let x, y ∈ V and c ∈ F .
Then

(a) ‖cx‖ = |c|‖x‖.

(b) ‖x‖ = 0 if and only if x = 0.

(c) Cauchy-Schwarz inequality: |〈x, y〉| ≤ ‖x‖‖y‖.

(d) Triangle inequality: ‖x+ y‖ ≤ ‖x‖+‖y‖.

Proof. Parts (a) and (b) are left as exercises. Part (c) is tricky. If y = 0, we’re done. So assume y 6= 0,
and let c = 〈x, y〉/〈y, y〉 be the component of x along y. By construction, x − cy is perpendicular
to y and hence to cy. Therefore, by the Pythagorean theorem,

‖x− cy‖2 + ‖cy‖2 = ‖(x− cy) + cy‖2 = ‖x‖2.

Since ‖x− cy‖2 ≥ 0, if we drop that term in the above equation, we get

‖cy‖2 ≤ ‖x‖2.

Take square roots to get

‖x‖ ≥ ‖cy‖ = |c|‖y‖ =

∣∣∣∣ 〈x, y〉‖y‖2

∣∣∣∣ ‖y‖ =
|〈x, y〉|
‖y‖

.

Multiply through by ‖y‖ to get Cauchy-Schwarz.

For the proof of the triangle inequality, we will need two basis results concerning complex numbers.
Let z = a+ bi be any complex number. Then we have (i) z + z = (a+ bi) + (a− bi) = 2a. So

z + z = 2 Re(z),

and (ii) |z| =
√
a2 + b2 ≥ |a|. So

Re(z) ≤ |z|.
The triangle inequality is then an easy consequence of Cauchy-Schwarz:

‖x+ y‖2 = 〈x+ y, x+ y〉
= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉
= ‖x‖2 + 〈x, y〉+ 〈y, x〉+ ‖y‖2

= ‖x‖2 + 〈x, y〉+ 〈x, y〉+ ‖y‖2

= ‖x‖2 + 2 Re(〈x, y〉) + ‖y‖2

≤ ‖x‖2 + 2 |〈x, y〉|+ ‖y‖2

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2

≤ (‖x‖+ ‖y‖)2.

Take square roots to get the triangle inequality.

Distance. Let (V, 〈 , 〉) be an inner product space over R or C. The distance between x, y ∈ V is
defined to be

d(x, y) :=‖x− y‖.
The following properties then easily follow from what we have already done:
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Proposition. For all x, y, z ∈ V ,

(a) Symmetry: d(x, y) = d(y, x).

(b) Positive-definiteness: d(x, y) ≥ 0, and d(x, y) = 0 iff x = y.

(c) Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y).

Angles. Now let (V, 〈 , 〉) be an inner product space over F = R. (So we will not consider
the case F = C in our discussion of angles.) We would like to define the notion of an angle
between x, y ∈ V . Our picture for the component provides motivation:

y

x

θ

cy~0

c = 〈x,y〉
‖y‖2

The dashed vertical line and the vector y are perpendicular (by definition of c). The cosine of the
displayed angle should be the length of the base, cy, divided by the length of the hypotenuse, x.
That quotient is

‖cy‖
‖x‖

= |c| ‖y‖
‖x‖

=
|〈x, y〉|
‖y‖2

‖y‖
‖x‖

=
|〈x, y〉|
‖x‖‖y‖

.

Omitting the absolute value on the real number 〈x, y〉 in the numerator provides the correct signs
for the different quadrants (when θ is not between 0 and 90 degrees).

Definition. Let (V, 〈 , 〉) be an inner product space over F = R, and let x, y be nonzero elements
of V . The angle θ between x and y is

θ = cos−1
(
〈x, y〉
‖x‖‖y‖

)
,

and thus,
〈x, y〉 = ‖x‖‖y‖ cos(θ).

Remarks.

• Cauchy-Schwarz says |〈x, y〉 ≤ ‖x‖‖y‖. Therefore,

−1 ≤ 〈x, y〉
‖x‖‖y‖

≤ 1.

So the inverse cosine in the definition of the angle always makes sense.

• In the definition of the angle, it might make more sense conceptually to write

cos(θ) =

〈
x

‖x‖
,
y

‖y‖

〉
.

In other words, the cosine of the angle between x and y is the inner product of their directions
where the direction of a vector w is taken to be the scalar multiple of w with unit length, w/‖w‖.
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