
Math 201 lecture for Wednesday, Week 10

Eigenspaces

Before getting started, we make an observation which should have probably already been mentioned:

Proposition. Let A,B be n× n matrices representing a linear function f : V → V with respect to
different bases. Then their characteristic polynomials are the same: pA(x) = pB(x).

Proof. We have A = P−1BP for some n× n matrix P . Then

pA(x) = det(A− xIn)

= det(P−1BP − xIn)

= det(P−1BP − xP−1InP )

= det(P−1BP − P−1(xIn)P ) (x is a scalar)

= det(P−1(B − xIn)P )

= det(P−1) det(B − xIn) det(P )

= det(B − xIn).

For the last step, recall that det(P−1) = det(P )−1, which follows from multiplicativity of the
determinant:

1 = det(In) = det(P−1P ) = det(P−1) det(P ).

Thus, it makes sense to talk about the characteristic polynomial of a linear transformation:
it the characteristic polynomial of any matrix representing the transformation.

Last time, we discussed the following algorithm that determines whether a matrix is diagonalizable
and, if it is, shows how to diagonalize it.

Diagonalization Algorithm Let A ∈Mn×n(F ).

(a) Find the eigenvalues of A as the zeros of its characteristic polynomial, pA(x) = det(A− xIn).

(b) For each eigenvalue λ, compute a basis for the eigenspace Eλ = ker(A− λIn).

(c) The matrix A is diagonalizable if and only if of the total number of eigenvectors
in the bases found in the previous step is n. In other words, A is diagonalizable if
and only if

∑
λ dimEλ = n where the sum is over all eigenvalues λ of A. If so, then the

union of these vectors is a basis for Fn. Create a matrix P whose columns are these vectors.
Then P−1AP = D, where D is a diagonal matrix with the eigenvalues along the diagonal, and
we get a corresponding commutative diagram:

Fn Fn

Fn Fn.

P−1 ∼

A

P−1∼

D
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The matrix P−1, considered as a linear function, takes coordinates with respect to the basis of
eigenvalues.

As mentioned last time, Step (c) of the diagonalization algorithm depends on the fact that eigen-
vectors with distinct eigenvalues are linearly independent. (Thus, when we combine the bases for
all of the eigenspaces, we end up with a linearly independent set.) We now prove this.

Proposition. Let V be any vector space, and let f : V → V be a linear transformation. Let
v1, . . . , vk ∈ V be eigenvectors for f with corresponding eigenvalues λi:

f(vi) = λivi

for i = 1, . . . , k. Suppose λ1, . . . , λk are distinct. Then v1, . . . , vk are linearly independent.

Proof. We will prove this by induction on k. The case k = 1 is OK since, by definition, an eigenvector
is a nonzero vector. Suppose v1, . . . , vk−1 are linearly independent for some k > 1 and that

a1v1 + · · ·+ akvk = 0

for some ai ∈ F . Let idV be the identity transformation defined by idV (v) = v for all v ∈ V . Apply
the linear transformation f − λkidV to the above dependence relation to get

(f − λkidV )(a1v1 + · · ·+ akvk) = (f − λkidV )(0) = 0

⇒ f(a1v1 + · · ·+ akvk)− λkidV (a1v1 + · · ·+ akvk) = 0

⇒ (a1λ1v1 + · · ·+ akλkvk)− (a1λkv1 + · · ·+ akλkvk) = 0

⇒ a1(λ1 − λk)v1 + · · ·+ ak−1(λk−1 − λk)vk−1 + ak(λk − λk)vk = 0

⇒ a1(λ1 − λk)v1 + · · ·+ ak−1(λk−1 − λk)vk−1 = 0

Since v1, . . . , vk−1 are linearly independent, all the coefficients are zero:

a1(λ1 − λk) = · · · = ak−1(λk−1 − λk) = 0.

Since the λi are distinct, this implies a1 = · · · = ak−1 = 0. Therefore, the original equation, a1v1 +
· · · + akvk = 0 becomes akvk = 0. Since vk is an eigenvector, it is nonzero. Hence, ak = 0, as
well.

Corollary. Suppose dimV = n and f : V → V is a linear transformation. Then if f has n distinct
eigenvalues, it is diagonalizable.

Proof. Each eigenvalue has at least one corresponding eigenvector. From the above proposition, if f
has n distinct eigenvalues, then it has n linearly independent eigenvectors. Since V has dimension n,
these eigenvectors form a basis for V . Let α be an ordered basis consisting of those eigenvectors.
Then [f ]αα is diagonal.

Remark. The Proposition implies that the union of bases for the eigenspaces of A forms a lin-
early independent sets. For instance, for convenience, suppose that A has three (distinct) eigenval-
ues λ1, λ2, and λ3, and suppose the corresponding eigenspaces have bases {u1, . . . , up}, {v1, . . . , vq},
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and {w1, . . . , wr}, respectively. We would like to show that the union of these sets is linearly depen-
dent. So suppose we have a relation

a1u1 + · · ·+ apup + b1v1 + · · ·+ bqvq + c1w1 + · · ·+ crwr = 0.

Let u =
∑p
i=1 aiui, v =

∑q
i=1 bivi, and w =

∑r
i=1 ciwi. Then we have u ∈ Eλ1

, v ∈ Eλ2
, and w ∈ Eλ3

and
u+ v + w = 0.

By the Proposition, must have u = v = w = 0. Otherwise, this relation would be a nontrivial linear
relation among eigenvectors with distinct eigenvalues. (Note that the only element of an eigenspace
that is not an eigenvector is the zero vector.)

Warning. The converse to the corollary is not true. For instance, consider the identity function
on Fn. Its matrix is In, which is already diagonal, and 1 is its only eigenvalue:

pIn(x) = det(In − xIn) = det ((1− x)In) = (1− x)n det(In) = (1− x)n.

So In is diagonalizable (in fact, it’s already diagonal) even though its eigenvalues are not distinct.

Cramer’s rule

Definition. Let A ∈ Mn×n(F ). For i, j ∈ {1, . . . , n}, let Aij ∈ M(n−1)×(n−1)(F ) be the matrix
formed by removing the i-th row and j-th column of A. The i, j-th minor of A is det(Aij), and
the i, j-th cofactor of A is (−1)i+j det(Aij). The adjugate of A is the matrix adj(A) ∈ Mn×n(F )
with i, j-th coordinate

adj(A)ij = (−1)i+j det(Aji).

(Note we are using Aji, not Aij .)

Theorem (Cramer’s rule). Let A ∈Mn×n(F ) be an invertible matrix, and let b ∈ Fn. Then the
solution to the system of linear equations Ax = b is given by

xj =
det(Mj)

det(A)

for j = 1, . . . , n where Mj ∈ Mn×n(F ) is the matrix formed by replacing the j-th column of A
with b.

Corollary. If A ∈Mn×n(F ) is invertible, then

A−1 =
1

det(A)
adj(A)

where adj(A) is the adjugate of A, defined by

Corollary. If A ∈Mn×n(F ) is invertible and F = R of F = C, then

(a) the solution for the system of equations Ax = b is a continuous function of the entries of A
and b, and

(b) the entries of A−1 are continuous functions of the entries of A.
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Proof. The entries in the determinant of a matrix B are polynomials in the entries of B. A quo-
tient f/g of polynomials f and g is a continuous function wherever g is nonzero.

Example. Consider the matrix

A =

 3 −1 6
−7 1 2

2 0 2

 .

The adjugate of A is

adj(A) =

 2 2 −8
18 −6 −48
−2 −2 −4

 .

For instance, to find the 1, 2-entry of adj(A) is

(−1)1+2 det(A2,1) = (−1)3 det

(
−1 6

0 2

)
= 2.

Using Cramer’s rule to compute the inverse of A, we get

A−1 =
1

det(A)
adj(A) = − 1

24

 2 2 −8
18 −6 −48
−2 −2 −4

 =

 −
1
12 − 1

12
1
3

− 3
4

1
4 2

1
12

1
12

1
6

 .
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