
Math 201 lecture for Monday, Week 10

Diagonalization algorithm

Recall from last time: an eigenvector for a linear transformation f : V → V is a nonzero vector v ∈ V
such that

f(v) = λv

for some λ ∈ F . In that case, λ is called an eigenvalue for f .

Definition. Let V be an n-dimensional vector space. A linear mapping f : V → V is diagonalizable
if there exists an ordered basis α of V such that [f ]αα = diag(λ1, . . . , λn). A matrix A ∈Mn×n(F ) is
diagonalizable if its corresponding linear mapping fA is diagonalizable.

Proposition. A linear mapping f : V → V is diagonalizable if and only if V has a basis consisting
solely of eigenvectors for f .

Proof. Let α be any ordered basis. Then [f ]αα is diagonal if and only if, for each j = 1, . . . , n, the j-th
column of [f ]αα has a single non-zero entry, in the j-th row. That j-th column is determined by

f(vj) = 0 · v1 + · · ·+ 0 · vj−1 + λj · vj + 0 · vj+1 + · · ·+ 0 · vn,

for some scalar λj . However, the above condition is equivalent to f(vj) = λjvj for j = 1, . . . , n, i.e.,
to α being a basis of eigenvectors.

Example. Not all linear transformations of a vector space to itself are diagonalizable. For instance,
consider the linear transformation f : R2 → R2 that is rotation of the plane by 90◦, having matrix

A =

(
0 −1
1 0

)
.

(1, 0)

(0, 1)

(−1, 0)

There is no point 0 6= v ∈ R2 such that Av = λv for some λ. (The matrix is diagonalizable over C,
though. Can you find two eigenvectors? Don’t get your hopes up, though—there are matrices that
are not diagonalizable over C.)

Suppose f : Fn → Fn is a linear transformation, and let A be the matrix corresponding to f , i.e.,
the matrix whose j-th column is f(ej) for all j (i.e., the matrix for f with respect to the standard
basis for Fn). Suppose we can find a basis α = 〈v1, . . . , vn〉 of eigenvectors for f with corresponding,
not necessarily distinct, eigenvalues λ1, . . . , λn. Let P be the matrix with columns v1, . . . , vn. Then,
as we saw last time,

P−1AP = diag(λ1, . . . , λn).
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Definition. Two n×n matrices A and B over F are similar or conjugate if there exists an invertible
matrix P such that A = P−1BP .

Exercise. The reader should verify that similarity is an equivalence relation.

Remark. Let f : V → V be a linear transformation of a finite-dimensional vector space, and let α
and β be two ordered bases for V . Then we saw earlier in the semester that the matrices A := [f ]αα
and B := [f ]ββ are conjugate, i.e., the matrices for f with respect to any two bases for V are conjugate.
The converse is also true: every matrix conjugate to A is the matrix representing f with respect to
some basis.

Finding eigenvectors and eigenvalues. Let A ∈Mn×n(F ) with corresponding linear function

fA : Fn → Fn

v 7→ Av.

As mentioned last time, the following argument is of central importance in the story of eigenvectors
and eigenvalues: We are looking for nonzero v ∈ Fn and any λ ∈ F such that Av = λv. We have

Av = λv ⇔ (A− λIn)v = 0 ⇔ v ∈ ker(A− λv).

This says that:

λ ∈ F is an eigenvalue for A if and only if ker(A− λIn) 6= {0}.

So we would like to determine those λ for which the kernel of A − λIn is nontrivial. The following
is key:

ker(A− λIn) 6= {0} ⇔ rank(A− λIn) < n ⇔ det(A− λIn) = 0.

Definition. The characteristic polynomial of A is

pA(x) := det(A− xIn).

We have just seen that

λ ∈ F is an eigenvalue for A if and only if it is a zero of the characteristic polynomial
for A, i.e., if and only if pA(λ) = 0.

Example. Let

A =

 2 −7 3
0 −5 3
0 0 2

 .

The characteristic polynomial of A is

pA(t) = det

 2 −7 3
0 −5 3
0 0 2

− x
 1 0 0

0 1 0
0 0 1


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= det

 2 −7 3
0 −5 3
0 0 2

−
 x 0 0

0 x 0
0 0 x



= det

 2− x −7 3
0 −5− x 3
0 0 2− x


= (2− x)(−5− x)(2− x)

= −(x− 2)2(x+ 5).

Thus, pA(x) = 0 if and only if x ∈ {2,−5}. So the eigenvalues of A are 2 (with multiplicity 2),
and −5.

Recall that our goal is to diagonalize A by finding a basis of eigenvectors. That’s not always possible,
but we can try. The first step is to compute the zeros of the characteristic polynomial, pA(x).
This tells us the eigenvalues for A. We then need to find the eigenvectors to go along with these
eigenvalues. Recall that nonzero v ∈ Fn is an eigenvector for A with eigenvalue λ if and only v ∈
ker(A− λIn).

Definition. Let λ be an eigenvalue of the n× n matrix A over F . Then the eigenspace for λ is

Eλ := E(A)λ := {v ∈ Fn : Av = λv} = ker(A− λInv).

The eigenspace, being the kernel of a matrix, is a linear subspace of Fn.

The second step in trying to diagonalize A is to compute a basis for each eigenspace Eλ.

Example. We have seen that the eigenvalues for

A =

 2 −7 3
0 −5 3
0 0 2

 .

are 2 (with multiplicity 2) and −5. Let’s compute the corresponding eigenspaces in the case F = R.

E2

A− 2I3 =

 2 −7 3
0 −5 3
0 0 2

−
 2 0 0

0 2 0
0 0 2



=

 0 −7 3
0 −7 3
0 0 0


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−→

 0 1 −3/7
0 0 0
0 0 0

 .

The first and third variables are free. Hence,

ker(A− 2I3) =
{

(x, 37z, z) : x, z ∈ R
}
.

For a basis we could take
{

(1, 0, 0), (0, 37 , 1)
}

, or easier, {(1, 0, 0), (0, 3, 7)}.

E−5

A− (−5)I3 =

 2 −7 3
0 −5 3
0 0 2

+

 5 0 0
0 5 0
0 0 5



=

 7 −7 3
0 0 3
0 0 7



−→

 1 −1 0
0 0 1
0 0 0

 .

Hence,
ker(A+ 5I3) = {(y, y, 0) : y ∈ R} .

For a basis we could take (1, 1, 0).

Thus, we have found three eigenvectors (1, 0, 0), (0, 3, 7), and (1, 1, 0). It turns out that eigenvectors
for distinct eigenvalues are always linearly independent (we’ll see this later). Hence, we have found
a basis of eigenvectors. Thus, A is diagonalizable, and if we use these eigenvectors as the columns
for a matrix:

P =

 1 0 1
0 3 1
0 7 0

 ,

then one may check that
P−1AP = diag(2, 2,−5).

Example. Now consider a matrix that is just slightly different from A:

B =

 2 1 3
0 −5 3
0 0 2

 .

The characteristic polynomial for A and for B are the same:

det (B − xI3) = det

 2− x 1 3
0 −5− x 3
0 0 2− x

 = −(x− 2)2(x+ 5).
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Thus, A and B have the same eigenvalues. Let’s compute the eigenspaces for B over R.

E2

B − 2I3 =

 2 1 3
0 −5 3
0 0 2

−
 2 0 0

0 2 0
0 0 2



=

 0 1 3
0 −7 3
0 0 0



−→

 0 1 0
0 0 1
0 0 0

 .

Thus, ker(B − 2I3) has basis {(1, 0, 0)}. It is only one-dimensional. Recall that ker(A − 2I3) was
two-dimensional. This is a crucial difference.

E−5

A− (−5)I3 =

 2 1 3
0 −5 3
0 0 2

+

 5 0 0
0 5 0
0 0 5



=

 7 1 3
0 0 3
0 0 7



−→

 1 1/7 0
0 0 1
0 0 0

 .

Hence,
ker(A− 3I3) = {(y,−y/7, 0) : y ∈ R} .

For a basis we could take (−7, 1, 0).

Our calculations prove that, at most, we can find two linearly independent vectors that are eigen-
vectors for B. Thus, there is no basis for R3 consisting of eigenvectors for B. Therefore, B is not
diagonalizable.
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Diagonalizing Algorithm Let A ∈Mn×n(F ).

(a) Find the eigenvalues of A as the zeros of its characteristic polynomial,

pA(x) = det(A− xIn).

(b) For each eigenvalue λ, compute a basis for the eigenspace Eλ = kerA− λIn.

(c) The matrix A is diagonalizable if and only if of the total number of eigen-
vectors in the bases found in the previous step is n. i.e., if and only if the
sum of the dimensions of the eigenspaces is n. If so, the union of these vectors is
a basis for Fn. Create a matrix P whose columns are these vectors. Then P−1AP = D,
where D is a diagonal matrix with the eigenvalues along the diagonal, and we get a
corresponding commutative diagram:

Fn Fn

Fn Fn.

P−1 ∼

A

P−1∼

D

The matrix P−1, considered as a linear function, takes coordinates with respect to the
basis of eigenvalues.

Remark. An n×nmatrixA is diagonalizable if and only if it has n linearly independent eigenvectors.
Step (c) of the diagonalization algorithm depends on a fact we will prove next time: eigenvectors
with distinct eigenvalues are linearly independent. (We compute bases for each eigenspace, and of
course the elements in a basis are linearly independent. But when we combine the bases for all of
the eigenspaces, why is the resulting set independent?)
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