
Math 201 lecture for Friday, Week 10

Algebraic and geometric multiplicity. Jordan form.

When does a transformation fail to be diagonalizable? We now introduce a sequence of ideas that
will allow us to answer this question.

Example. Earlier, we considered the linear transformation R2 → R2 given by the matrix

A =

(
0 −1
1 0

)
.

Geometrically, it rotates the plane counterclockwise by 90◦ and, hence, has no eigenvectors: an
eigenvector would not rotate—it would just be scaled. The characteristic polynomial of A is

pA(x) = det

(
−x −1
1 −x

)
= x2 + 1.

The equation x2 + 1 = 0 has no solutions over R, and hence, the transformation has no eigenvalues.

Now consider the linear transformation f : C2 → C2 given by the same matrix A. Over C we can
solve x2 + 1 = 0 to find two eigenvalues, ±i. Each of these will have at least one eigenvector, and
eigenvectors for distinct eigenvalues are linearly independent. Since C2 has dimension 2, that means
we will get a basis of eigenvectors. Let’s compute a basis for the eigenspace for i:

A− iI2 =

(
−i −1
1 −i

)
r1↔r2−−−−→

(
1 −i
−i −1

)
r2↔r2+ir1−−−−−−−→

(
1 −i
0 0

)
.

So the kernel of A− iI2 is {(iy, y) : y ∈ C}, which has basis {(i, 1)}. Similarly, the eigenspace for −i
has basis {(−i, 1)}. Check:

A

(
i
1

)
=

(
0 −1
1 0

)(
i
1

)
=

(
−1
i

)
= i

(
i
1

)

A

(
−i
1

)
=

(
0 −1
1 0

)(
−i
1

)
=

(
−1
−i

)
= −i

(
−i
1

)
.

Letting

P =

(
i −i
1 1

)
,

we get

P−1AP =

(
i 0
0 −i

)
.

This example illustrates one obstacle to diagonalization: the characteristic polynomial may not have
enough roots in the field F .

Definition. A polynomial p ∈ F [x] splits over F if there exist c, λ1, . . . , λn ∈ F such that

p(x) = c(x1 − λ1) · · · (x− λn).

Equivalently, p(x) had n roots (zeros), λ1, . . . , λn, in F . These λi need not be distinct.
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Remark. Let F be any field, and let p(x) be a polynomial whose coefficients are in F , i.e., p(x) ∈
F [x]. It turns out that there exists a field F ⊆ K such that p(x) splits over K.

Example. The polynomial p(x) = x2 + 1 splits over C but not over R.

A useful fact from algebra:

Theorem. (Fundamental theorem of algebra) Every p ∈ C[x] splits over C.

Proposition. Let V be a vector space over F with dimV = n, and let f : V → V be a linear
transformation. If f is diagonalizable, then its characteristic polynomial splits over F .

Proof. Let D = diag(λ1, . . . , λn) be a diagonal matrix representing f . Then the characteristic
polynomial for f (which, as we saw earlier, in the last lecture, does not depend on the choice of
matrix representative) is

pf (x) = pD(x) = det(D − xIn) = (λ1 − x) · · · (λn − x) = (−1)n(x1 − λ1) · · · (x− λn).

The converse of this proposition is not true:

Example. Let

A =

(
1 1
0 1

)
.

The characteristic polynomial of A is

pA(x) = det(A− xI2)

= det

(
1− x 1

0 1− x

)
= (x− 1)2.

Thus, the characteristic polynomial splits over any field F . There is one eigenvalue, 1, which occurs
with algebraic multiplicity 2 (the precise definition of algebraic multiplicity appears below). Let’s
proceed with the algorithm for diagonalization by computing a basis for the eigenspace for 1, i.e.,
for ker(A− I2): (

1 1
0 1

)
−
(

1 0
0 1

)
=

(
0 1
0 0

)
.

Therefore, ker(A−I2) = {(x, 0) : x ∈ F}. A basis is {(1, 0)}. Thus, there is no basis for F 2 consisting
of eigenvectors: our theory says any eigenvector would have to have eigenvalue 1, and the space of
eigenvectors with eigenvalue 1 is only one-dimensional!

Definition. Let dimV < ∞. The algebraic multiplicity of an eigenvalue λ ∈ F for a lin-
ear transformation f : V → V (or for any matrix representing f) is the largest number m such
that pf (x) = (x− λ)mq(x) for some polynomial q(x) ∈ F [x].

The geometric multiplicity of λ is the dimension of the eigenspace Eλ(f) for λ:

dimEλ(f) = dim ker(f − λ idV ).
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So if A is a matrix representing f , then the geometric multiplicity of λ ∈ F is

dimEλ(A) = dim ker(A− λ In).

Remark. To rephrase something we already know: A ∈Mn×n(F ) is diagonalizable if and only
if the sum of its geometric multiplicities is n. That’s because this is the only case in which
we have enough linearly independent eigenvectors to form a basis of eigenvectors.

Proposition. Let dimV < ∞, and let λ be an eigenvalue of a linear transformation f : V → V .
Then the geometric multiplicity of λ is at most the algebraic multiplicity of λ.

Proof. Let v1, . . . , vk be a basis for ker(f − λ idV ), and extend it to a basis v1, . . . , vn for all of V .
We have f(vi) = λvi for 1 = 1, . . . , k. So with respect to our chosen basis, the matrix representing f
has the form

A :=

(
λIk B
0 C

)
,

where B and C are (n− k)× (n− k) matrices. So the characteristic polynomial for f is

pf (x) = det

(
(λ− x)Ik B

0 C − xIn−k

)
= det((λ− x)Ik) det(C − xIn−k)

= (λ− x)k det(C − xIn−k)

= (λ− x)kq(x),

for some polynomial q(x). (To see the second equality, above, expand the determinant in line 1 along
the first column—there will only be one term, which will be λ − x times a smaller determinant.
Expand that determinant along its first column. Repeat k times, each time picking up a factor
of λ − x.) This shows that the algebraic multiplicity of λ is at least k, the geometric multiplicity
of λ.

Corollary. Let A ∈Mn×n(F ). Then A is diagonalizable if and only if its characteristic polynomial
splits over F and the geometric multiplicity and algebraic multiplicity of each eigenvalue are equal.

Proof. Suppose that A is diagonalizable. We saw earlier in this lecture that the characteristic
polynomial for A then splits over F . So we can write

pA(x) = (−1)n
k∏
i−1

(x− λi)mi

where λ1, . . . , λk are the distinct eigenvalues of A. The degree of pA(x) is n (exercise!), from which

it follows that
∑k
i=1mi = n, i.e, the sum of the algebraic multiplicities is n.

Let gi be the geometric multiplicity of eigenvalue λi. Since A is diagonalizable, we know that the
sum of its geometric multiplicities is also n.
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Therefore, we have n =
∑k
i=1 gi =

∑k
i=1mi, and by the Proposition, gi ≤ mi for all i. Since the mi

are nonnegative, it follows that mi = gi for all i.

Conversely, suppose that pA(x) splits and that the algebraic and geometric multiplicities of each
eigenvalue are equal. Factor pA(x) as above and using same notation for algebraic and geometric

multiplicities. As before, since the degree of pA(x) = n, we have n =
∑k
i=1mi. By assumption,

mi = gi for all i. So it follows that the sum of the geometric multiplicities is n, and hence, A is
diagonalizable.

Jordan form. What can we say when a linear transformation is not diagonalizable? Can we still
choose a basis to make the matrix for the transformation simple in some sense? We give one answer
here. First, we need a couple definitions. A Jordan block of size k for λ ∈ F is the k × k matrix
with λs on the diagonal and 1s on the “superdiagonal”:

Jk(λ) =



λ 1 0 0 · · · 0 0
0 λ 1 0 · · · 0 0
0 0 λ 1 · · · 0 0

...
. . .

...
0 0 0 0 · · · λ 1
0 0 0 0 · · · 0 λ


For example,

J4(3) =


3 1 0 0
0 3 1 0
0 0 3 1
0 0 0 3

 .

Note the following example of the special case of a Jordan block of size 1:

J1(5) = [5].

A matrix is in Jordan form if it is in block diagonal form with Jordan blocks for various λ along the
diagonal: 

Jk1(λ1) 0 · · · 0
0 Jk2(λ2) · · · 0

0 0
. . . 0

0 0 · · · Jkm(λm)


For example, here is a matrix in Jordan form:

2 1 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 2 1 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 5 0 0 0
0 0 0 0 0 4 1 0
0 0 0 0 0 0 4 1
0 0 0 0 0 0 0 4


.
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It has two 2× 2 Jordan blocks for 2, a 1× 1 Jordan block for 5, and a 3× 3 Jordan block for 4:
J2(2) 0 0 0

0 J2(2) 0 0
0 0 J1(5) 0
0 0 0 J3(4)

 .

Theorem. Let dimV < ∞. Suppose f : V → V is a linear transformation over F and that the
characteristic polynomial for f splits, i.e., the field F contains all of the zeros of the characteristic
polynomial. Then there exists an ordered basis for V such that the matrix representing f with
respect to that basis is in Jordan form. The Jordan form is unique up to a permutation of the
Jordan blocks.

So a matrix is diagonalizable if and only if its characteristic polynomial splits and all of its Jordan
blocks have size 1. We also know that a matrix such as 5 1 0

0 5 0
0 0 2

 ,

which is already in Jordan form but not diagonal, is not diagonalizable.
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