
Math 201 lecture for Wednesday, Week 9

Determinants and volume

The parallelogram spanned by v, w ∈ R2 is

P = {λv + µw : λ, µ ∈ [0, 1]}

where [0, 1] = {x ∈ R : 0 ≤ x ≤ 1}:

v + w

v

w

Theorem. Let A(v, w) be the area of the parallelogram spanned by v, w ∈ R2. Then

A(v, w) = |det(v, w)|,

where det(v, w) is the determinant of the matrix with rows v and w.

Note: Since the determinant of a square matrix and its transpose are the same, A(v, w) is also the
absolute value of the matrix whose columns are v and w.

Proof of theorem. Define SA(v, w) to be the signed area defined in the worksheet. We show that SA
satisfies the properties required of a determinant function. Then, since the determinant is unique,
it follows that SA(v, w) = det(v, w) and the result follows since A(v, w) = |SA(v, w)|.

• Normalized. We have SA(e1, e2) = 1:

e1 = (1, 0).

e2 = (0, 1)

π
2

The sign is positive since the angle from e1 to e2 is less than π.

• Alternating. We have SA(v, v) = 0 since in this case, the corresponding parallelogram is
degenerate.

1



• Multilinear.

– SA(cv, w) = cSA(v, w) and SA(v, cw) = cSA(v, w):

c > 0

v

w

cv

c < 0

v

w

−vcv

The areas are scaled by |c| in either case since the base is scaled by |c| and the height
does not change. The drawing assumes that the angle from v to w is less than π. There is
a similar drawing for the case where the angle is greater than π. Either way, in the case
where c < 0 note that although SA(cv, w) and SA(v, w) have opposite signs, SA(cv, w)
and cSA(v, w) have the same sign.

Similar drawings show that SA(v, cw) = cSA(v, w).

– SA(v + u,w) = SA(v, w) + SA(u,w):

v

u
w

v + u

a

a′

b′

b

Note how to dissect the u-w and v-w parallelograms to get the (v + u)-w parallelogram:
Cut section a in the u-w parallelogram and place it at section a′, then cut section b in
the v-w parallelogram and place it at section b′. The result is two parallelograms that
can exactly cover the (v + u)-w parallelogram.

Of course, our drawing is just one case among the many possible angles between pairs
of v, u, and w.
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Definition. The parallelepided spanned by v1, . . . , vn ∈ Rn is

P = {λ1v1 + · · ·+ λnvn : λi ∈ [0, 1] for i = 1, . . . , n} ,

.

It turns out that the volume of P is given by the determinant of the matrix whose row (or columns)
are v1, . . . , vn:

vol(P ) = |det(v1, . . . , vn)|.

Note that one of the vertices of P is the origin (set λ1 = · · · = λn = 0). To get an arbitrary
parallelepiped in Rn we can just translate by any vector u ∈ Rn:

P + u := {p+ u : p ∈ P} = {λ1v1 + · · ·+ λnvn + u : 0 ≤ λi ≤ 1 for i = 1, . . . , n} .

The volume does not change:
vol(P + u) = |det(v1, . . . , vn)|.

Theorem. Let P be the parallelepided spanned by v1, . . . , vn ∈ Rn. Let A ∈ Mn×n(R), and
let LA : Rn → Rn be the corresponding linear function, LA(x) = Ax. Then LA(P ) is the paral-
lelepiped spanned by the vectors Av1, . . . , Avn, and

vol(LA(P )) = |det(A)|vol(P ).

Moreover, LA(P+u) = LA(P )+LA(u). Thus, application of LA scales the volumes of parallelepipeds
in Rn be a factor of |det(A)|.

Proof. We have x ∈ LA(P ) if and only if there exist λ1, . . . , λn ∈ [0, 1] such that

x = A(λ1v1 + · · ·+ λnvn) = λ1Av1 + · · ·+ λnAvn,

i.e., if and only if x is in the parallelepiped determined by Av1, . . . , Avn.

Let B be the matrix with columns v1, . . . , vn. Then vol(P ) = |det(B)|, Note that AB is the matrix
whose columns are Av1, . . . , Avn. It follows that

vol(LA(P )) = |det(AB)| = |det(A)|| det(B)|.

We have LA(P + u) = LA(P ) + LA(u) since LA is linear.

Remark. To approximate the volume of an arbitrary shape in Rn, one can try to dissect the shape
into a union of parallelepipeds. One definition of the volume of an arbitrary shape is derived by
taking limits of such approximations. One can then ask how the volume of a shape S changes
under the application of a function f : Rn → Rn. If the function is “nice” (differentiable), then at
each point p in the shape, one creates a linear approximation Df(p) of the function f (called the
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derivative of f at p), akin to LA, above. Further assuming that f is injective, the volume of the
image of the shape is then given by the change of variables formula in multivariable calculus:

vol(f(S)) =

∫
p∈S
|det(Df(p))|.

In light of the theorem we just proved, the determinant |Df(p)| should be thought of as a scaling
factor. It tells us how much f scales volumes (infinitesimally) at p.
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