Math 201 lecture for Wednesday, Week 9

Determinants and volume

The parallelogram spanned by $v, w \in \mathbb{R}^2$ is

$$
P = \{\lambda v + \mu w \colon \lambda, \mu \in [0, 1]\}
$$

where $[0, 1] = \{x \in \mathbb{R} : 0 \le x \le 1\}$:

Theorem. Let $A(v, w)$ be the area of the parallelogram spanned by $v, w \in \mathbb{R}^2$. Then

$$
A(v, w) = |\det(v, w)|,
$$

where $\det(v, w)$ is the determinant of the matrix with rows v and w.

Note: Since the determinant of a square matrix and its transpose are the same, $A(v, w)$ is also the absolute value of the matrix whose columns are v and w.

Proof of theorem. Define $SA(v, w)$ to be the signed area defined in the worksheet. We show that SA satisfies the properties required of a determinant function. Then, since the determinant is unique, it follows that $SA(v, w) = \det(v, w)$ and the result follows since $A(v, w) = |SA(v, w)|$.

• Normalized. We have $SA(e_1, e_2) = 1$:

The sign is positive since the angle from e_1 to e_2 is less than π .

• Alternating. We have $SA(v, v) = 0$ since in this case, the corresponding parallelogram is degenerate.

• Multilinear.

$$
- SA(cv, w) = cSA(v, w) \text{ and } SA(v, cw) = cSA(v, w):
$$
\n
$$
c > 0
$$
\n
$$
w \qquad \qquad w \qquad \qquad w
$$
\n
$$
c < 0
$$
\n
$$
0 \qquad \qquad w \qquad \qquad w
$$
\n
$$
0 \qquad \qquad w \qquad \qquad w
$$
\n
$$
0 \qquad \qquad w \qquad \qquad w
$$
\n
$$
0 \qquad \qquad w \qquad \qquad w
$$
\n
$$
0 \qquad \qquad w \qquad \qquad w
$$

The areas are scaled by $|c|$ in either case since the base is scaled by $|c|$ and the height does not change. The drawing assumes that the angle from v to w is less than π . There is a similar drawing for the case where the angle is greater than π . Either way, in the case where $c < 0$ note that although $SA(cv, w)$ and $SA(v, w)$ have opposite signs, $SA(cv, w)$ and $cSA(v, w)$ have the same sign.

Similar drawings show that $SA(v, cw) = cSA(v, w)$.

$$
- SA(v+u, w) = SA(v, w) + SA(u, w):
$$

Note how to dissect the u-w and v-w parallelograms to get the $(v + u)$ -w parallelogram: Cut section a in the $u-w$ parallelogram and place it at section a' , then cut section b in the $v-w$ parallelogram and place it at section b' . The result is two parallelograms that can exactly cover the $(v + u)-w$ parallelogram.

Of course, our drawing is just one case among the many possible angles between pairs of v, u , and w .

 \Box

Definition. The parallelepided spanned by $v_1, \ldots, v_n \in \mathbb{R}^n$ is

$$
P = \{ \lambda_1 v_1 + \dots + \lambda_n v_n : \lambda_i \in [0,1] \text{ for } i = 1, \dots, n \},
$$

It turns out that the volume of P is given by the determinant of the matrix whose row (or columns) are v_1, \ldots, v_n :

$$
vol(P) = |det(v_1, \ldots, v_n)|.
$$

Note that one of the vertices of P is the origin (set $\lambda_1 = \cdots = \lambda_n = 0$). To get an arbitrary parallelepiped in \mathbb{R}^n we can just translate by any vector $u \in \mathbb{R}^n$:

$$
P + u := \{ p + u : p \in P \} = \{ \lambda_1 v_1 + \dots + \lambda_n v_n + u : 0 \le \lambda_i \le 1 \text{ for } i = 1, \dots, n \}.
$$

The volume does not change:

$$
vol(P+u)=|\det(v_1,\ldots,v_n)|.
$$

Theorem. Let P be the parallelepided spanned by $v_1, \ldots, v_n \in \mathbb{R}^n$. Let $A \in M_{n \times n}(\mathbb{R})$, and let $L_A: \mathbb{R}^n \to \mathbb{R}^n$ be the corresponding linear function, $L_A(x) = Ax$. Then $L_A(P)$ is the parallelepiped spanned by the vectors Av_1, \ldots, Av_n , and

$$
vol(L_A(P)) = |\det(A)| vol(P).
$$

Moreover, $L_A(P+u) = L_A(P) + L_A(u)$. Thus, application of L_A scales the volumes of parallelepipeds in \mathbb{R}^n be a factor of $|\det(A)|$.

Proof. We have $x \in L_A(P)$ if and only if there exist $\lambda_1, \ldots, \lambda_n \in [0,1]$ such that

$$
x = A(\lambda_1 v_1 + \dots + \lambda_n v_n) = \lambda_1 A v_1 + \dots + \lambda_n A v_n,
$$

i.e., if and only if x is in the parallelepiped determined by Av_1, \ldots, Av_n .

Let B be the matrix with columns v_1, \ldots, v_n . Then $vol(P) = |det(B)|$, Note that AB is the matrix whose columns are Av_1, \ldots, Av_n . It follows that

$$
vol(L_A(P)) = |\det(AB)| = |\det(A)||\det(B)|.
$$

We have $L_A(P + u) = L_A(P) + L_A(u)$ since L_A is linear.

Remark. To approximate the volume of an arbitrary shape in \mathbb{R}^n , one can try to dissect the shape into a union of parallelepipeds. One definition of the volume of an arbitrary shape is derived by taking limits of such approximations. One can then ask how the volume of a shape S changes under the application of a function $f: \mathbb{R}^n \to \mathbb{R}^n$. If the function is "nice" (differentiable), then at each point p in the shape, one creates a linear approximation $Df(p)$ of the function f (called the

 \Box

derivative of f at p), akin to L_A , above. Further assuming that f is injective, the volume of the image of the shape is then given by the change of variables formula in multivariable calculus:

$$
\text{vol}(f(S)) = \int_{p \in S} |\det(Df(p))|.
$$

In light of the theorem we just proved, the determinant $|Df(p)|$ should be thought of as a scaling factor. It tells us how much f scales volumes (infinitesimally) at p .