Math 201 lecture for Wednesday, Week 9
Determinants and volume
The parallelogram spanned by v, w € R? is
P={ v+ pw: A\ pel0,1]}

where [0,1] ={z e R: 0<z <1}

Theorem. Let A(v,w) be the area of the parallelogram spanned by v, w € R2. Then

A(va w) - ‘ det(vv U))|,

where det(v,w) is the determinant of the matrix with rows v and w.

Note: Since the determinant of a square matrix and its transpose are the same, A(v,w) is also the

absolute value of the matrix whose columns are v and w.

Proof of theorem. Define SA(v,w) to be the signed area defined in the worksheet. We show that SA
satisfies the properties required of a determinant function. Then, since the determinant is unique,
it follows that SA(v,w) = det(v, w) and the result follows since A(v,w) = |SA(v,w)|.

e Normalized. We have SA(ej,ez) = 1:

€g = (07 1)

The sign is positive since the angle from e; to es is less than 7.

e Alternating. We have SA(v,v) = 0 since in this case, the corresponding parallelogram is

degenerate.



e Multilinear.
— SA(cv,w) = eSA(v,w) and SA(v, cw) = cSA(v,w):

c>0

c<0

The areas are scaled by |c| in either case since the base is scaled by |c| and the height
does not change. The drawing assumes that the angle from v to w is less than 7. There is
a similar drawing for the case where the angle is greater than w. Either way, in the case
where ¢ < 0 note that although SA(cv,w) and SA(v,w) have opposite signs, SA(cv,w)
and ¢SA(v,w) have the same sign.

Similar drawings show that SA(v, cw) = ¢SA(v, w).

— SA(v+ u,w) = SA(v,w) + SA(u, w):

Note how to dissect the u-w and v-w parallelograms to get the (v + u)-w parallelogram:
Cut section a in the u-w parallelogram and place it at section a’, then cut section b in
the v-w parallelogram and place it at section &’. The result is two parallelograms that
can exactly cover the (v + u)-w parallelogram.

Of course, our drawing is just one case among the many possible angles between pairs
of v, u, and w.



Definition. The parallelepided spanned by v1,...,v, € R™ is

P={ v+ -+ v, : N €0, fori=1,...,n},

It turns out that the volume of P is given by the determinant of the matrix whose row (or columns)
are vi,...,Up:

vol(P) = | det(vy, ..., v,)|.

Note that one of the vertices of P is the origin (set Ay = -+ = X\, = 0). To get an arbitrary
parallelepiped in R™ we can just translate by any vector u € R™:

Pru={ptu:pePy={ v+ + v, +u:0<\;<1fori=1,...,n}.

The volume does not change:
vol(P +u) = | det(vy, ..., v,)|.

Theorem. Let P be the parallelepided spanned by vq,...,v, € R". Let A € M,x,(R), and
let La: R™ — R™ be the corresponding linear function, L4(z) = Az. Then L4(P) is the paral-
lelepiped spanned by the vectors Awvy, ..., Av,, and

vol(L4(P)) = | det(A)[vol(P).

Moreover, L4 (P+u) = La(P)+La(u). Thus, application of L o scales the volumes of parallelepipeds
in R™ be a factor of | det(A)].

Proof. We have © € L4(P) if and only if there exist A1,..., A, € [0,1] such that
x =AM+ + o) = MAv + -+ A Aoy,

i.e., if and only if z is in the parallelepiped determined by Avq, ..., Av,.

Let B be the matrix with columns vy, ..., v,. Then vol(P) = |det(B)|, Note that AB is the matrix
whose columns are Avq, ..., Av,. It follows that

vol(La(P)) = |det(AB)| = | det(A)|| det(B)].
We have La(P + u) = La(P)+ La(u) since L4 is linear. O

Remark. To approximate the volume of an arbitrary shape in R™, one can try to dissect the shape
into a union of parallelepipeds. One definition of the volume of an arbitrary shape is derived by
taking limits of such approximations. One can then ask how the volume of a shape S changes
under the application of a function f: R™ — R™. If the function is “nice” (differentiable), then at
each point p in the shape, one creates a linear approximation D f(p) of the function f (called the



derivative of f at p), akin to L, above. Further assuming that f is injective, the volume of the
image of the shape is then given by the change of variables formula in multivariable calculus:

vol(f(9)) = /es |det(Df(p))]-

In light of the theorem we just proved, the determinant |D f(p)| should be thought of as a scaling
factor. It tells us how much f scales volumes (infinitesimally) at p.



