
Math 201 lecture for Friday, Week 9

Eigenvectors and eigenvalues

Definition. Let f : V → V be a linear transformation of a vector space V over F . A nonzero
vector v ∈ V is an eigenvector for f with eigenvalue λ ∈ F if

f(v) = λv.

If A ∈Mn×n(F ), a nonzero vector v ∈ Fn is an eigenvector for A with eigenvalue λ ∈ F if

Av = λv.

Thus, eigenvectors and eigenvalues for A are the same as eigenvectors and eigenvalues for the asso-
ciated linear function fA : Fn → Fn (defined by fA(v) = Av).

Here is why we like eigenvectors: Suppose that α = 〈v1, . . . , vn〉 is an ordered basis of eigenvectors
for f : V → V with corresponding eigenvalues λ1, . . . , λn, i.e., f(vi) = λivi for i = 1, . . . , n. Then the
matrix [f ]αα representing f with respect to the basis α for the domain and codomain is the diagonal
matrix diag(λ1, . . . , λn).

Example. Let

A =

(
−1 2
−6 6

)
.

with corresponding linear function

fA : R2 → R2

(x, y) 7→ (−x+ 2y,−6x+ 6y).

It turns out that (2, 3) and (1, 2) are eigenvectors for fA with eigenvalues 2 and 3, respectively:(
−1 2
−6 6

)(
2
3

)
=

(
4
6

)
= 2

(
2
3

)
(
−1 2
−6 6

)(
1
2

)
=

(
3
6

)
= 3

(
1
2

)
.

Find the matrix representing fA with respect to the ordered basis

α = 〈(2, 3), (1, 2)〉.

To do this we write the image of each vector in α as a linear combination of the vectors in α and
pull off the coefficients to create columns:

fA(2, 3) = 2(2, 3) = 2 · (2, 3) + 0 · (1, 2)

fA(1, 2) = 3(1, 2) = 0 · (2, 3) + 3 · (1, 2).

Hence,

[fA]αα =

(
2 0
0 3

)
= diag(2, 3).
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That is the point: a basis of eigenvectors gives a matrix representative that is diagonal, which is
the simplest type of matrix to think about. Let’s think abstractly about what just happened. The
matrix A is the matrix representing fA with respect to the standard basis, and the matrix

D = diag(2, 3) =

(
2 0
0 3

)
.

represents fA with respect to the basis α. Let φα be the mapping that takes coordinates with respect
to α. We get the commutative diagram:

R2 R2

R2 R2.

φα ∼

A

φα∼

D

(2, 3)

(1, 2)

2(2, 3)

3(1, 2)

(1, 0)

(0, 1)

2(1, 0)

3(0, 1)

Reviewing something we talked about earlier in the semester: The matrix for φα would be a bit of
a chore to write down. It’s j-column would be the image of ej . So we would have to write each ej
as a linear combination of the basis vectors in α. However, the inverse of φα is easy to write down.
Take a look at the commutative diagram. By construction of φα, we have

φ−1
α (1, 0) = (2, 3) and φ−1

α (0, 1) = (1, 2).

So the matrix for φ−1
α is

P =

(
2 1
3 2

)
.

So the matrix for φα is P−1. Therefore, another way to write the commutative diagram is

R2 R2

R2 R2.

P−1 ∼

A

P−1∼

D

From contemplating this diagram, we see that

D = P−1AP.

Summary: having found eigenvectors (2, 3) and (1, 2), we place those eigenvectors as columns in a
matrix P , and then P−1AP is a diagonal matrix with the corresponding eigenvalues on the diagonal.

To generalize:
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Let A ∈ Mn×n(F ) with corresponding linear function fA : Fn → Fn. Suppose α =
〈v1, . . . , vn〉 is an ordered basis of eigenvectors with corresponding eigenvalues λ1, . . . , λn,
i.e., Avi = λivi for i = 1, . . . , n. Let P be the matrix whose columns are v1, . . . , vn. Then

P−1AP = D,

where D = diag(λ1, . . . , λn), and we have a commutative diagram

Fn Fn

Fn Fn.

P−1 ∼

A

P−1∼

D

How does one find eigenvectors and eigenvalues? Let A ∈ Mn×n(F ) with corresponding
function fA : Fn → Fn (so fA(v) := Av). We are looking for a nonzero vector v ∈ Fn and a scalar λ
such that Av = λv. To achieve that, the following argument is of central importance:

Av = λv ⇔ (A− λIn)v = 0 ⇔ v ∈ ker(A− λv).

This says that:

λ ∈ F is an eigenvalue for A if and only if ker(A− λIn) 6= {0}.

So we would like to determine those λ for which the kernel of A − λIn is nontrivial, for which the
following is key:

ker(A− λIn) 6= {0} ⇔ rank(A− λIn) < n ⇔ det(A− λIn) = 0.

Let’s apply this to the matrix A in our example:

det

((
−1 2
−6 6

)
− λ

(
1 0
0 1

))
= det

((
−1 2
−6 6

)
−
(
λ 0
0 λ

))

= det

(
−1− λ 2
−6 6− λ

)

= (−1− λ)(6− λ)− 2(−6)

= λ2 − 5λ+ 6

= (λ− 2)(λ− 3).

Thus, ker(A− λIn) 6= {0} if and only if λ = 2, 3. So the eigenvalues for A are 2 and 3.

Having found the eigenvalues, how do we go about finding corresponding eigenvalues? For
each eigenvalue λ, there are nonzero elements ker(A − λIn). So we just apply our algorithm for
finding the kernel of a matrix:
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λ = 2

A− 2I2 =

(
−1 2
−6 6

)
−

(
2 0
0 2

)
=

(
−3 2
−6 4

)
.

So we need to find (x, y) ∈ R2 satisfying(
−3 2
−6 4

)(
x
y

)
=

(
0
0

)
.

Therefore, we perform Gaussian elimination:(
−3 2
−6 4

)
 

(
1 − 2

3
0 0

)
.

Hence,

ker(A− 2I2) =

{(
2

3
y, y

)
: y ∈ R

}
.

For a basis we could take
(
2
3 , 1

)
, or easier, (2, 3).

Similarly for the other eigenvalue:

λ = 3

A− 3I2 =

(
−1 2
−6 6

)
−

(
3 0
0 3

)

=

(
−4 2
−6 3

)

 

(
1 − 1

2
0 0

)
.

Hence,

ker(A− 3I2) =

{(
1

2
y, y

)
: y ∈ R

}
.

For a basis we could take
(
1
2 , 1

)
, or easier, (1, 2).

Let A ∈Mn×n(F ). The eigenvalues for A are exactly the solutions λ to

det(A− λIn) = 0.

If λ ∈ F is an eigenvalue, it corresponding eigenvectors are the nonzero vectors in

ker(A− λIn).

Use our algorithm to find a basis for the matrix A− λIn.
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