Math 201 lecture for Friday, Week 9

Eigenvectors and eigenvalues

Definition. Let f: V — V be a linear transformation of a vector space V over F. A nonzero
vector v € V is an eigenvector for f with eigenvalue \ € F' if

fv) = .
If A€ M,xn(F), a nonzero vector v € F™ is an eigenvector for A with eigenvalue A € F' if
Av = .

Thus, eigenvectors and eigenvalues for A are the same as eigenvectors and eigenvalues for the asso-
ciated linear function fa: F™ — F™ (defined by fa(v) = Av).

Here is why we like eigenvectors: Suppose that o = (vy,...,v,) is an ordered basis of eigenvectors

for f: V — V with corresponding eigenvalues A1, ..., Ay, i.e., f(v;) = Ajv; for i = 1,... ,n. Then the
matrix [f]% representing f with respect to the basis « for the domain and codomain is the diagonal

matrix diag(Ag, ..., A\p).
-1 2
A= ( L2 )

fa: R? - R?
(I’,y) = (71’ + 2ya —6x + Gy)

Example. Let

with corresponding linear function

It turns out that (2,3) and (1,2) are eigenvectors for f4 with eigenvalues 2 and 3, respectively:
“1 2\ (2\_ (4 _y(2
—6 6 3 ) \6 /) 3
“1 2\ (1) _ (3 _,4(1
-6 6 2 ) \6 /) 2 )

Find the matrix representing fa with respect to the ordered basis
a=((2,3),(1,2)).

To do this we write the image of each vector in « as a linear combination of the vectors in « and
pull off the coefficients to create columns:

Hence,



That is the point: a basis of eigenvectors gives a matrix representative that is diagonal, which is
the simplest type of matrix to think about. Let’s think abstractly about what just happened. The
matrix A is the matrix representing f with respect to the standard basis, and the matrix

D = diag(2,3) = <§ g)

represents f4 with respect to the basis a. Let ¢, be the mapping that takes coordinates with respect
to a. We get the commutative diagram:

L2 — 3012

on__ 301

Reviewing something we talked about earlier in the semester: The matrix for ¢, would be a bit of
a chore to write down. It’s j-column would be the image of e;. So we would have to write each ¢;
as a linear combination of the basis vectors in a. However, the inverse of ¢, is easy to write down.
Take a look at the commutative diagram. By construction of ¢, we have

#71(1,0) = (2,3) and ¢,(0,1) = (1,2).

r(21)

So the matrix for ¢, is P~'. Therefore, another way to write the commutative diagram is

So the matrix for ¢ ! is

R? —4 R?

P*llz ZJP*1

R2 2 R2

From contemplating this diagram, we see that
D =P 'AP.

Summary: having found eigenvectors (2,3) and (1,2), we place those eigenvectors as columns in a
matrix P, and then P~' AP is a diagonal matrix with the corresponding eigenvalues on the diagonal.

To generalize:



Let A € M,x,(F) with corresponding linear function f4: F™ — F™. Suppose a =

(v1,...,v,) is an ordered basis of eigenvectors with corresponding eigenvalues Ai, ..., Ay,

ie., Av; = \jv; for t = 1,...,n. Let P be the matrix whose columns are vq,...,v,. Then
P~'AP =D,

where D = diag(A1,...,A,), and we have a commutative diagram

J N

P*llZ lefl

Fr D pn

How does one find eigenvectors and eigenvalues? Let A € M, «,(F) with corresponding
function fa: F™ — F™ (so fa(v) := Av). We are looking for a nonzero vector v € F™ and a scalar A
such that Av = Av. To achieve that, the following argument is of central importance:

Av=X v & (A-A,)v=0 <& wvecker(4d—- ).
This says that:

A € F is an eigenvalue for A if and only if ker(A — \I,,) # {0}.

So we would like to determine those A\ for which the kernel of A — AI, is nontrivial, for which the
following is key:

ker(A —\I,,) #{0} & rank(A—M,)<n < det(A—A\I,)=0.

Let’s apply this to the matrix A in our example:

(220 )= ((22)-(00)
:det( _1_EA 63/\)
= (=1 =A)(6— ) — 2(—6)
=X —5A+6

= (A —2)(A—3).

Thus, ker(A — AL,) # {0} if and only if A = 2,3. So the eigenvalues for A are 2 and 3.

Having found the eigenvalues, how do we go about finding corresponding eigenvalues? For
each eigenvalue A, there are nonzero elements ker(A — AI,,). So we just apply our algorithm for
finding the kernel of a matrix:



a5 5)-(32) (3

So we need to find (z,y) € R? satisfying

(% 3)00)-(

Therefore, we perform Gaussian elimination:
-3 2\ (1 -3
—6 4 0 0 ’
2
ker(A — 2I,) = {<3y,y> (Y € R} .

For a basis we could take (%,1), or easier, (2,3).

Hence,

Similarly for the other eigenvalue:

A=3
-1 2 3 0
amm=(508) -0 3)
(-4 2
“\ -6 3
1 -1
2
(o @)
Hence,

31 = { (L) e v).

For a basis we could take (%, 1), or easier, (1,2).

Let A € My« (F). The eigenvalues for A are exactly the solutions A to
det(A — \I,,) =0.
If A € F is an eigenvalue, it corresponding eigenvectors are the nonzero vectors in
ker(A — \I,).

Use our algorithm to find a basis for the matrix A — AI,,.




