
Math 201 lecture for Friday, Week 8

Existence and uniqueness of the determinant

Laplace expansion of the determinant. Let A be an n×n matrix. For each i, j ∈ {1, 2, . . . , n},
define Aij to be the matrix formed by removing the i-th row and j-th column from A. Fix k ∈
{1, 2, . . . , n}. Then

det(A) =

n∑
j=1

(−1)k+jAkj det(Akj).

This expresses det(A) in terms of an alternating sum of determinants of (n−1)×(n−1) matrices. We
call this expanding det(A) along the k-th row. Applying the formula recursively leads to a complete
evaluation of det(A). Since, det(A) = det(At), you can also calculate the determinant by recursively
expanding along columns.

Example. Let

A =

 1 2 3
2 0 1
1 1 1

 .

Let’s calculate the determinant by expanding along the first row:

det(A) = 1 · det

(
0 1
1 1

)
− 2 · det

(
2 1
1 1

)
+ 3 · det

(
2 0
1 1

)

= (−1)− 2(1) + 3(2) = 3.

To check, let’s expand along the second row, instead, noting the signs:

det(A) = −2 · det

(
2 3
1 1

)
0 · det

(
1 3
1 1

)
− 1 · det

(
1 2
1 1

)

= −2(−1) + 0(−2)− 1(−1) = 3.

Finally, let’s expand along the third column:

det(A) = 3 · det

(
2 0
1 1

)
− 1 · det

(
1 2
1 1

)
+ 1 · det

(
1 2
2 0

)

= 3(2)− 1(−1) + 1(−4) = 3.

Note: if your matrix has a particular row or column with a lot of 0s in it, you might want to expand
along that row or column since a lot of the terms will be 0. For example, to compute

det

 1 3 0
3 2 3
1 4 0

 ,

expand along the third column:

0 (blah)− 3 det

(
1 3
1 4

)
+ 0 (blah) = −3(1) = −3.
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The “blah”s are there instead of explicit determinants since they are being multiplied by 0. Their
exact values don’t matter, so we don’t need to waste time calculating them. We will not prove the
formula for the Laplace expansion. It is very similar to that for the permutation expansion.

Existence and uniqueness of the determinant. Recall the definition that started our discussion
of the determinant:

Definition. The determinant is a multilinear, alternating function det : Mn×n(F )→ F of the rows
of square matrix, normalized so that its value on the identity matrix is 1.

The definition says “the determinant”, but for all we knew, there could be several different func-
tions Mn×n(F )→ F all satisfying the criteria of being multilinear, alternating, and normalized. Or,
it is possible there are no functions that satisfy the criteria? So the definition requires us to prove
that, in fact, there exists exactly one determinant function (for each n).

Just after defining the determinant, we showed that if d : Mn×n(F ) → F is any multilinear, alter-
nating, normalized function, then a choice of a row reduction for A ∈Mn×n(F ) determines the value
of d(A). The subtlety here is that, there are many different sequence of row operations that would
produced the row echelon form for A. Do each of these produce the same value for d(A) (in other
words, is d well-defined)? We never proved that they would.

So let’s begin again and consider the particular function d : Mn×n(F ) → F defined recursively as
the Laplace expansion of a matrix along its first row:

d(A) :=

n∑
j=1

(−1)1+jA1j d(A1j) (1)

if n ≥ 1, and by d(A) = a if A = [a] is a 1× 1 matrix. This function d is well-defined—there are no
choices to be made is in calculation.

Exercise. Prove that d is multilinear, alternating, and normalized (i.e., its value at In is 1).

Thus, we see there exists at least one determinant function.

Having defined d by (1), now note that in addition to calculating d using the given recursive formula,
since d is multilinear, alternating, and normalize, its value can be determined via row reductions,
just as before. What’s new now is that we see that no matter which choices are made in the row
reduction, we must get the value determined by (1).

In sum, we have shown that a multilinear, alternating, normalized function exists and is unique. Its
value is completely determined by choosing any sequence of row operations reducing a matrix to
its row echelon form, and the choice of the sequence of row operations does not matter. So far, we
have three different methods for calculating the determinant: using row operations, summing over
permutations, and via Laplace expansion along any row or column.

bonus content

Generalized Laplace expansion. Let A ∈Mn×n(F ), and fix a subset of k rows ri1 , . . . , rik of A
where 1 ≤ k ≤ n. Let I = {i1, . . . , ik} be the indices of these rows. For any subset J ⊆ {j1, . . . , jk},
define |J | := j1 + · · ·+ jk, and define

AIJ = the k × k submatrix of A formed by the intersection of rows
indexed by I and the columns indexed by J
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ĀIJ = the (n− k)× (n− k) submatrix of A formed by the intersection
of rows indexed by {1, . . . , n} \ I and the columns indexed
by {1, . . . , n} \ J .

Then
det(A) =

∑
J

(−1)|I|+|J| det(AIJ) det(ĀIJ)

where the sum is over all k-element subsets J of {1, . . . , n}.1

Example. The case where k = 1 is the ordinary Laplace expansion formula.

Example. Let

A =


1 7 0 5
2 2 2 2
5 1 4 6
0 6 7 3

 .

We will compute det(A) using the generalize Laplace expansion along the first two rows of A. So,
using the notation from above, I = {1, 2} ⊂ {1, 2, 3, 4}. There are six choices for a pair of columns:

J ∈ ({1, 2} , {1, 3} , {1, 4} , {2, 3} , {2, 4} , {3, 4}) .

The term in the expansion corresponding to J = {1, 3} would be

(−1)|I|+|J| det(AIJ) det(ĀIJ) = (−1)(1+2)+(1+3) det

(
1 0
2 2

)
det

(
1 6
6 3

)
= (−1)(1 · 2− 0 · 2)(1 · 3− 6 · 6) = 66.

The entire expansion is

det(A) =
∑
J

(−1)|I|+|J| det(AIJ) det(ĀIJ)

=
∑
J

(−1)3+|J| det(A{1,2}J) det(Ā{1,2}J)

= (−1)3+(1+2) det(A{1,2}{1,2}) det(Ā{3,4}{3,4}) + (−1)3+(1+3) det(A{1,2}{1,3}) det(Ā{3,4}{2,4})

+ (−1)3+(1+4) det(A{1,2}{1,4}) det(Ā{3,4}{2,3}) + (−1)3+(2+3) det(A{1,2}{2,3}) det(Ā{3,4}{1,4})

+ (−1)3+(2+4) det(A{1,2}{2,4}) det(Ā{3,4}{1,3}) + (−1)3+(3+4) det(A{1,2}{3,4}) det(Ā{3,4}{1,2})

= det(A{1,2}{1,2}) det(Ā{3,4}{3,4})− det(A{1,2}{1,3}) det(Ā{3,4}{2,4})

+ det(A{1,2}{1,4}) det(Ā{3,4}{2,3}) + det(A{1,2}{2,3}) det(Ā{3,4}{1,4})

− det(A{1,2}{2,4}) det(Ā{3,4}{1,3}) + det(A{1,2}{3,4}) det(Ā{3,4}{1,2})

1Since det(A) = det(At), there is a similar formula for expansion along a fixed set of k columns.
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Continuing the calculation:

A =


1 7 0 5
2 2 2 2
5 1 4 6
0 6 7 3


det(A) = det(A{1,2}{1,2}) det(Ā{3,4}{3,4})− det(A{1,2}{1,3}) det(Ā{3,4}{2,4})

+ det(A{1,2}{1,4}) det(Ā{3,4}{2,3}) + det(A{1,2}{2,3}) det(Ā{3,4}{1,4})

− det(A{1,2}{2,4}) det(Ā{3,4}{1,3}) + det(A{1,2}{3,4}) det(Ā{3,4}{1,2})

= det

(
1 7
2 2

)
det

(
4 6
7 3

)
− det

(
1 0
2 2

)
det

(
1 6
6 3

)

+ det

(
1 5
2 2

)
det

(
1 4
6 7

)
+ det

(
7 0
2 2

)
det

(
5 6
0 3

)

− det

(
7 5
2 2

)
det

(
5 4
0 7

)
+ det

(
0 5
2 2

)
det

(
5 1
0 6

)
= (−12)(−30)− (2)(−33) + (−8)(−17) + (14)(15)− (4)(35) + (−10)(30)

= 332.

Example. Let

A =


3 2 1 0 0
1 2 4 0 0
0 1 7 0 0
1 2 1 4 7
3 4 2 9 3

 .

The generalized Laplace expansion along the first three rows has only two nonzero terms, yielding

det(A) = det

 3 2 1
1 2 4
0 1 7

det

(
4 7
9 3

)
.
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