Math 201 lecture for Wednesday, Week 7

Change of basis

Let V be a vector space with ordered basis $\alpha = \langle v_1, \ldots, v_n \rangle$. Recall the coordinate mapping

$$\phi_{\alpha} \colon V \xrightarrow{\sim} F^{n}$$
$$v = a_{1}v_{1} + \dots + a_{n}v_{n} \mapsto (a_{1}, \dots, a_{n}).$$

In particular, we have $\phi_{\alpha}(v_i) = e_i$. Consider the special case where $V = F^n$ so that

$$\phi_{\alpha} \colon F^n \to F^n,$$

and each v_j is an element of F^n . Since ϕ_{α} is now a mapping between tuples, is represented by the $n \times n$ matrix M with the property that $\phi_{\alpha}(v) = Mv$ for all $v \in F^n$. The *j*-th column of M is $\phi_{\alpha}(e_j)$ for j = 1, ..., n.

Proposition. With notation as above, let P be the $n \times n$ matrix whose j-th column is v_j for j = 1, ..., n. Then $M = P^{-1}$.

Proof. If X is any matrix, then Xe_j is the *j*-th column of X. So in our case, $Pe_j = v_j$. Since the v_j form a basis, the columns of P are linearly independent. So P has rank n and is, thus, invertible. We have

$$Pe_j = v_j \quad \Rightarrow \quad P^{-1}Pe_j = P^{-1}v_j \quad \Rightarrow \quad e_j = P^{-1}v_j.$$

Therefore, $P^{-1}v_j = e_j = \phi_{\alpha}(v_j)$ for all j. Since the v_j form a basis for F^n , it follows that $P^{-1}v = \phi_{\alpha}(v)$ for all $v \in F^n$. So P^{-1} is the matrix representing ϕ_{α} , which means that $P^{-1} = M$.

Next, consider a linear function

$$L_A \colon F^n \to F^m$$

given by the $m \times n$ matrix A, i.e., $L_A(v) = Av$ for all $v \in F^n$. Let $\alpha = \langle v_1, \ldots, v_n \rangle$ and $\beta = \langle w_1, \ldots, w_m \rangle$ be ordered bases for F^n and F^m respectively. What is the matrix representing L_A with respect to these new bases? We have the diagram

$$\begin{array}{ccc} F^n & \xrightarrow{L_A} & F^m \\ \phi_{\alpha} \downarrow & & \downarrow \phi_{\beta} \\ F^n & \xrightarrow{[L_A]^\beta_{\alpha}} & F^m. \end{array}$$

For ease of notation, let $B := [L_A]^{\beta}_{\alpha}$. Our main goal today is to give a formula for calculating B. We already know how to find the matrices representing the vertical coordinate mappings: let P and Q be the matrices whose columns are the elements of α and β , respectively, in order. Our diagram becomes

$$\begin{array}{ccc} F^n & \xrightarrow{A} & F^m \\ P^{-1} \downarrow^{\wr} & & \wr \downarrow Q^{-1} \\ F^n & \xrightarrow{B} & F^m. \end{array}$$

Therefore, $B = Q^{-1}AP$. We summarize our result:

Proposition. Let $A \in M_{m \times n}(F)$, and consider the linear mapping $L_A: F^n \to F^m$ determined by A, i.e., L(v) = Av for each $v \in F^n$. Let $\alpha = \langle v_1, \ldots, v_n \rangle$ and $\beta = \langle w_1, \ldots, w_m \rangle$ be ordered bases for F^n and F^m , respectively. Let P be the $n \times n$ matrix with j-th column v_j for $j = 1, \ldots, n$, and let Q be the $m \times m$ matrix with j-th column w_j for $j = 1, \ldots, m$. Then the matrix B representing L_A with respect to the bases α and β is

$$B = Q^{-1}AP,$$

and we have the commutative diagram

$$\begin{array}{ccc} F^n & \xrightarrow{A} & F^m \\ P^{-1} \downarrow^{\wr} & & \downarrow^{\land} \downarrow^{Q^{-1}} \\ F^n & \xrightarrow{B} & F^m. \end{array}$$

Example. Let \mathbb{Q} be the field of rational numbers, and consider the linear function

$$f: \mathbb{Q}^3 \to \mathbb{Q}^2$$
$$(x, y, z) \mapsto (x + 3y + 2z, 2y + z),$$

with corresponding matrix

$$A = \left(\begin{array}{rrr} 1 & 3 & 2 \\ 0 & 2 & 1 \end{array}\right).$$

Choose the following bases for the domain and codomain:

$$\begin{aligned} \mathbb{Q}^3 : & \alpha = \langle (1,0,0), (1,1,0), (1,1,1) \rangle \\ \mathbb{Q}^2 : & \beta = \langle (0,1), (1,1) \rangle. \end{aligned}$$

To find the matrix representing f with respect to these new bases, create matrices whose columns are the basis vectors:

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad Q = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}.$$

Calculate the inverse of Q:

$$\left(\begin{array}{ccc|c} 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{array}\right) \xrightarrow{r_1 \leftrightarrow r_2} \left(\begin{array}{ccc|c} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{array}\right) \xrightarrow{r_1 \to r_1 - r_2} \left(\begin{array}{ccc|c} 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 0 \end{array}\right).$$

The matrix representing f with respect to the bases α and β is then:

$$B = Q^{-1}AP = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 3 & 2 \\ 0 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & -2 & -3 \\ 1 & 4 & 6 \end{pmatrix}.$$

This agrees with the fact that

$$f(1,0,0) = (1,0) = -1(0,1) + 1(1,1)$$

$$f(1,1,0) = (4,2) = -2(0,1) + 4(1,1)$$

$$f(1,1,1) = (6,3) = -3(0,1) + 6(1,1).$$

An important special case. The special case of the Proposition that arises most frequently in practice is where m = n and $\alpha = \beta$. In other, words, we start with a mapping $L_A: F^n \to F^n$ represented by the matrix A, and we choose the same new basis $\alpha = \langle v_1, \ldots, v_n \rangle$ for F^n for both the domain and codomain. We are then interested in the matrix representing L_A with respect to this new basis α . In that case, let P be the matrix whose columns are v_1, \ldots, v_n , and we get the commutative diagram

$$\begin{array}{ccc} F^n & \stackrel{A}{\longrightarrow} & F^n \\ P^{-1} & & \swarrow & \swarrow \\ F^n & \stackrel{B}{\longrightarrow} & F^m \end{array}$$

and the matrix we are looking for is

$$B = P^{-1}AP.$$

We say B is formed by *conjugating* A.

Exercise. Say $A, B \in M_{n \times n}(F)$ are similar and write $A \sim B$ if there exists an invertible matrix $P \in M_{n \times n}(F)$ such that $P^{-1}AP = B$. Prove that \sim is an equivalence relation. What does an equivalence class represent?

Example. Consider the real matrix

$$A = \left(\begin{array}{rrr} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right)$$

What matrix represents the linear function $L_A: F^3 \to F^3$ with respect to the ordered basis $\alpha = \langle (1,1,1), (1,0,-1), (0,1,-1) \rangle$?

Solution. Use the vectors of α as columns to define the matrix

$$P = \left(\begin{array}{rrrr} 1 & 1 & 0\\ 1 & 0 & 1\\ 1 & -1 & -1 \end{array}\right).$$

Compute the inverse of P using our algorithm (omitted):

$$P^{-1} = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & -1 \\ -1 & 2 & -1 \end{pmatrix}.$$

Then the matrix representing L_A with respect to the ordered basis α is

$$B = P^{-1}AP = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Notice that the matrix representing L_A in the example becomes the much simpler diagonal matrix after a change of basis. We can then apply an important trick to compute A^k for all integers k. First note that

What happens in general? Here is the trick that can be applied here:

$$B^{k} = (P^{-1}AP)^{k}$$

= $\underbrace{(P^{-1}AP)(P^{-1}AP)(P^{-1}AP)\cdots(P^{-1}AP)(P^{-1}AP)}_{k \text{ times}}$
= $P^{-1}A(PP^{-1})A(PP^{-1})A(PP^{-1})\cdots(PP^{-1})A(PP^{-1})AP$
= $P^{-1}A^{k}P$.

Since $B^k = P^{-1}A^kP$, we can solve for A^k by multiply both sides of the equality on the left

by P and on the right by P^{-1} to get

$$\begin{split} A^{k} &= PB^{k}P^{-1} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}^{k} \begin{pmatrix} \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & -1 \\ -1 & 2 & -1 \end{pmatrix} \end{pmatrix} \\ &= \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} 2^{k} & 0 & 0 \\ 0 & (-1)^{k} & 0 \\ 0 & 0 & (-1)^{k} \end{pmatrix} \begin{pmatrix} \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & -1 \\ -1 & 2 & -1 \end{pmatrix} \end{pmatrix} \\ &= \frac{1}{3} \begin{pmatrix} 2^{k} + 2(-1)^{k} & 2^{k} - (-1)^{k} & 2^{k} - (-1)^{k} \\ 2^{k} - (-1)^{k} & 2^{k} + 2(-1)^{k} & 2^{k} - (-1)^{k} \\ 2^{k} - (-1)^{k} & 2^{k} - (-1)^{k} & 2^{k} + 2(-1)^{k} \end{pmatrix} \\ &= \frac{1}{3} \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix} \end{split}$$

where for k = 1, 2, 3, ...,

$$a = \begin{cases} 2^k + 2 & \text{if } k \text{ is even} \\ 2^k - 2 & \text{if } k \text{ is odd} \end{cases} \text{ and } b = \begin{cases} 2^k - 1 & \text{if } k \text{ is even} \\ 2^k + 1 & \text{if } k \text{ is odd.} \end{cases}$$

Exercise. Show that $2^k \pm 2$ and $2^k \pm 1$ are divisible by 3 for k = 1, 2, ...