
Math 201 lecture for Monday, Week 7

Matrix inversion

Last time, we defined matrix multiplication: if A is an m×p matrix and B is a p×n matrix,
then AB is the m× n matrix with i, j-entry

(AB)ij :=

p∑
k=1

AikBkj .

If m = n, then BA would also be defined, but it is usually that case that AB 6= BA.
Another peculiar thing is that for matrices, there are “zero divisors”, i.e., matrices A,B
such that AB = 0, but neither A nor B is a zero matrix. For example,(

0 0
0 1

)(
0 1
0 0

)
=

(
0 0
0 0

)
.

Diagonal matrices. The matrix A is a diagonal matrix if its only nonzero entries appear
along the diagonal: Aij = 0 if i 6= j. This terminology makes sense regardless of the
dimensions of A, but is usually used in the case of square matrices, i.e., for the case where A
is an n× n matrix. In that case, we write

A = diag(a1, . . . , an)

where Aii = ai for i = 1 . . . , n (and Aij = 0, otherwise.). For instance,

diag(1, 4, 0, 6) =


1 0 0 0
0 4 0 0
0 0 0 0
0 0 0 6

 .

Identity matrices. The n× n identity matrix is the n× n matrix

In = diag(1, . . . , 1).

It has the following property: AIn = A and InB = B whenever these products make sense.
For instance,

(
1 2 3
4 5 6

) 1 0 0
0 1 0
0 0 1

 =

(
1 2 3
4 5 6

)
and  1 0 0

0 1 0
0 0 1

 1 2
3 4
5 6

 =

 1 2
3 4
5 6

 .
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Inverses. Let A be an m×n matrix, and let B be an n×m matrix. If AB = In, we say A
is a left-inverse for B and B is a right-inverse for A. For example,

A =

(
1 1 1
0 1 1

)
and B =

 1 −1
0 0
0 1

 .

Then

AB =

(
1 1 1
0 1 1

) 1 −1
0 0
0 1

 =

(
1 0
0 1

)
.

Hence, A is a left-inverse for B and B is a right-inverse for A. On the other hand,

BA =

 1 −1
0 0
0 1

( 1 1 1
0 1 1

)
=

 1 0 0
0 0 0
0 1 1

 .

So B is not a left-inverse of A and A is not a right-inverse of B. (In fact, B does not have a
left-inverse and A does not have a right-inverse. This has to do with their ranks not being
high enough. The connection with solving systems of equations we describe below explains
that.)

We will mainly be interested in inverses for square matrices. Suppose that A is an n × n
matrix. Suppose B is a right-inverse. So B is an n × n matrix such that AB = In.
Since matrix multiplication is not commutative, the value of BA is not immediately clear.
However, in fact, we have the following important result:

Theorem. Let A and B be n× n matrices. The following are equivalent:

(a) AB = In.
(b) BA = In.

If AB = In, we say A and B are invertible and write A−1 = B and B−1 = A. The following
are equivalent:

(i) A is invertible.
(ii) rank(A) = n.
(iii) The reduced echelon form of A is In.

The proof of this theorem will follow from an elegant algorithm for computing the inverse
of a matrix which we present below. The equivalence of the last to items on the list is
something we already know.

Calculating the inverse. Our problem now is to determine whether an inverse for a
matrix exists, and if so, to calculate that inverse. The methods we present here would also
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be applicable to calculating right- and left-inverses of non-square matrices—it boils down to
solving systems of linear equations, after all—but we will concentrate on the case of square
matrices.

Example. Let

A =

 0 3 −1
1 0 1
1 −1 0

 .

A right-inverse for A would satisfy the following: 0 3 −1
1 0 1
1 −1 0

 a b c
d e f
g h i

 =

 1 0 0
0 1 0
0 0 1

 .

So we need to find the entries a, b, . . . , i. We can break this into three problems: 0 3 −1
1 0 1
1 −1 0

 a
d
g

 =

 1
0
0


 0 3 −1

1 0 1
1 −1 0

 b
e
h

 =

 0
1
0


 0 3 −1

1 0 1
1 −1 0

 c
f
i

 =

 0
0
1

 .

Equivalently, we need to solve three systems of linear equations:

0x + 3y − z = 1

x + 0y + z = 0

x− y + 0z = 0

0x + 3y − z = 0

x + 0y + z = 1

x− y + 0z = 0

0x + 3y − z = 0

x + 0y + z = 0

x− y + 0z = 1

3



Their augmented matrices would like: 0 3 −1 1
1 0 1 0
1 −1 0 0

 ,

 0 3 −1 0
1 0 1 1
1 −1 0 0

 ,

 0 3 −1 0
1 0 1 0
1 −1 0 1

 .

The row operations needed to determine the solvability of this system are the same in all
three cases. So we can combine all three of these systems at once in one “super”-augmented
matrix calculation: 0 3 −1 1 0 0

1 0 1 0 1 0
1 −1 0 0 0 1

 r1↔r2−−−−→

 1 0 1 0 1 0
0 3 −1 1 0 0
1 −1 0 0 0 1



r3→r3−r1−−−−−−→

 1 0 1 0 1 0
0 3 −1 1 0 0
0 −1 −1 0 −1 1



r2↔r3−−−−−→
r3→−r3

 1 0 1 0 1 0
0 1 1 0 1 −1
0 3 −1 1 0 0



r3→r3−3r2−−−−−−−→

 1 0 1 0 1 0
0 1 1 0 1 −1
0 0 −4 1 −3 3



r3→−r3/4−−−−−−→

 1 0 1 0 1 0
0 1 1 0 1 −1
0 0 1 −1/4 3/4 −3/4



r1→r1−r3−−−−−−→
r2→r2−r3

 1 0 0 1/4 1/4 3/4
0 1 0 1/4 1/4 −1/4
0 0 1 −1/4 3/4 −3/4

 .

Going back to the original systems of equations, we see that we need a
d
g

 =

 1/4
1/4
−1/4

 ,

 b
e
h

 =

 1/4
1/4
3/4

 ,

 c
d
i

 =

 3/4
−1/4
−3/4

 .

In other words, the following matrix is a right-inverse for A: 1/4 1/4 3/4
1/4 1/4 −1/4
−1/4 3/4 −3/4

 .
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The argument we’ve just given for a particular matrix easily generalizes to give the following
algorithm.

Algorithm for computing the inverse of a matrix. Let A be an n×n matrix. Perform
row operations on the “super”-augmented matrix [A | In] to compute the reduced echelon
form of A:

(A | In) −→
(
Ã | B

)
.

There are two possibilities: either Ã = In or not. If Ã = In, then B = A−1. Next, we
consider what happens when Ã 6= In. Since B is derived by performing row operations
on In, we have rank(B) = rank(In) = n. Thus, B cannot have a row of zeros. If Ã 6= In, it
must have a row of zeros. It follows that the system of equations is inconsistent, and A has
no inverse.

Now suppose that rank(A) so that

(A | In) −→ (In | B) (1)

and AB = In. Consider trying to find C so that BC = In. In this case, reverse the row
operations in (1) to get

(B | In) −→ (In | A) ,

and thus, C = A, i.e., BA = In.

In summary:

• If Ã = In (equivalently, rank(A) = n) then AB = BA = In. (So B = A−1 and
A = B−1.)

• If Ã 6= In (equivalently, rank(A) < n), then Ã has a row of zeros and A has no inverse.

In particular: A ∈Mn×n is invertible if and only if rank(A) = n.
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