
Math 201 lecture for Friday, Week 7

Determinants

Definition. The determinant is a multilinear, alternating function of the rows of square
matrix, normalized so that its value on the identity matrix is 1.

To explain this terminology, start with the fact that the determinant is a function of the
form

det : Mn×n(F )→ F.

Given a square matrix A ∈ Mn×n(F ) with rows r1, . . . , rn ∈ Fn, we write det(A) =
det(r1, . . . , rn), i.e., we consider the determinant as a function of the rows of A. The
determinant function has the following properties:

(a) Multilinear. The determinant is a linear function with respect to each row. Thus, if
r1, . . . , rn are the row vectors of A (elements of Fn), r′i is another row vector, and
λ ∈ F , then

det(r1, . . . , ri−1, λ ri + r′i, ri+1, . . . , rn) = λ det(r1, . . . , ri−1, ri, ri+1, . . . , rn)

+ det(r1, . . . , ri−1, r
′
i, ri+1, . . . , rn).

The above expresses the fact that, in particular, the determinant is linear with respect
to the i-th row.

(b) Alternating. The determinant is zero if two of its arguments are equal:

det(r1, . . . , rn) = 0

if ri = rj for some i 6= j.

(c) Normalized. det(In) = det(e1, . . . , en) = 1.

We will prove the following theorem later:

Theorem. For each n ≥ 0, there exists a unique determinant function.

For now we will accept this theorem on faith and explore some of the consequences. The
following proposition shows that we can compute the determinant through row reduction.

Proposition 1. (Behavior of the determinant with respect to row operations.) Let A,B ∈
Mn×n(F ).

(a) If B is obtained from A by swapping two rows, then det(B) = −det(A).

(b) If B is obtained from A by scaling a row by a scalar λ, then det(B) = λ det(A).
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(c) If B is obtained from A by adding a scalar multiple of one row to another row,
then det(B) = det(A).

Proof. For part (a), let r1, . . . , rn ∈ Fn be the rows of A. For ease of notation, we will
assume that B is obtained from A by swapping the first two rows. The argument we present
clearly generalizes to the case of swapping arbitrary rows. Replace the first two rows of A
with r1 + r2 to obtain a matrix whose determinant is 0 by the alternating property:

0 = det(r1 + r2, r1 + r2, r3, . . . , rn).

Expand my multilinearity to get:

0 = det(r1 + r2, r1 + r2, r3, . . . , rn)

= det(r1, r1 + r2, r3, . . . , rn) + det(r2, r1 + r2, r3, . . . , rn)

= det(r1, r1, r3, . . . , rn) + det(r1, r2, r3, . . . , rn)

+ det(r2, r1, r3, . . . , rn) + det(r2, r2, r3, . . . , rn)

= 0 + det(A) + det(B) + 0.

It follows that det(B) = −det(A).

Part (a) follows immediately from the fact that the determinant is linear with respect to
each row:

det(r1, . . . , ri−1, λri, ri+1, . . . , rn) = λ det(r1, . . . , ri−1, ri, ri+1, . . . , rn).

For Part (c), we use multilinearity and the alternating property. For ease of notation, we’ll
consider the case where B is obtained from A by adding a multiple of row 1 to row 2:

det(B) = det(r1, λr1 + r2, r3, . . . , rn)

= λdet(r1, r1, r3, . . . , rn) + det(r1, r2, r3, . . . , rn)

= 0 + det(r1, r2, r3, . . . , rn)

= det(A).

Corollary. Let A ∈ Mn×n(F ), and let E be the reduced row echelon form of A. Then
there exists a non-zero k ∈ F such that det(A) = k det(E).

Proof. The proof is immediate from Proposition 1.
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Example 1. Here we compute the determinant of a 2 × 2 matrix using the fact that the
determinant is a multilinear alternating mapping with value 1 on the identity matrix.

det

(
a b
c d

)
= det((a, b), (c, d))

= det(a e1 + b e2, c e1 + d e2)

= a det(e1, c e1 + d e2) + b det(e2, c e1 + d e2)

= ac det(e1, e1) + ad det(e1, e2) + bc det(e2, e1) + bd det(e2, e2)

= 0 + ad det(e1, e2) + bc det(e2, e1) + 0

= ad det(e1, e2)− bc det(e1, e2)

= ad det

(
1 0
0 1

)
− bc det

(
1 0
0 1

)
= ad · 1− bc · 1 = ad− bc.

Example 2. Here is an example of using row reduction to compute the determinant of a
matrix. Let

A =

 1 2 −2
9 4 0
2 2 4
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Using Proposition 1, we see that

det(A) = det

 1 2 −2
9 4 0
2 2 4



= det

 1 2 −2
0 −14 18
0 −2 8



= −det

 1 2 −2
0 −2 8
0 −14 18



= 2 det

 1 2 −2
0 1 −4
0 −14 18



= 2 det

 1 2 −2
0 1 −4
0 0 −38



= 2(−38) det

 1 2 −2
0 1 −4
0 0 1



= 2(−38) det

 1 0 0
0 1 0
0 0 1


= 2(−38) = −76.
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Example 3.

det


4 2 −3 8
0 5 1 3
0 0 2 6
0 0 0 3

 = (4 · 5 · 2 · 3) det


1 1/2 −3/2 4
0 1 1/5 3/5
0 0 1 3
0 0 0 1



= (4 · 5 · 2 · 3) det


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


= (4 · 5 · 2 · 3) · 1 = 120.

A matrix like that in the previous example, which has only zero entries below the diagonal,
is called upper-triangular. So A ∈Mn×n(F ) is upper-triangular if Aij = 0 whenever i > j.

Proposition 2. The determinant of an upper-triangular matrix is the product of its
diagonal elements.

Proof. Let A be upper-triangular, and let E be its reduced echelon form. From Proposi-
tion 1, we know that det(A) = k det(E) for some non-zero constant k. Imagine row-reducing
an upper-triangular matrix, and you will see that E has a row of zeros if and only if A has
some diagonal entry equal to zero. If E has a row of zeros, then det(E) = 0. To see this,
suppose the rows of E are r1, . . . , rn with rn = ~0. By multilinearity, we have:

det(E) = det(r1, . . . , rn−1,~0)

= det(r1, . . . , rn−1, 0 ·~0)

= 0 · det(r1, . . . , rn−1,~0)

= 0.

So if A has a diagonal entry equal to 0, then det(E) = 0, which implies det(A) = k det(E) =
0. So the result holds in this case.

Next, suppose that A has no diagonal entries equal to 0. Compute det(A) using multilin-
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earity:

det(A) = det



a11 a12 a13 a14 . . . a1n
0 a22 a23 a24 . . . a2n
0 0 a33 a34 . . . a3n
0 0 0 a44 . . . a4n

. . .
...
ann



= a11 · · · ann det



1 a12/a11 a13/a11 a14/a11 . . . a1n/a11
0 1 a23/a22 a24/a22 . . . a2n/a22
0 0 1 a34/a33 . . . a3n/a33
0 0 0 1 . . . a4n/a44

. . .
...
1



= a11 · · · ann det(In)

= a11 · · · ann.

Above, it is clear that once we get to the case of all 1s on the diagonal, we can row-reduce
the matrix to the identity by adding multiples of rows to other rows—operations that do
not change the determinant.

Proposition 3. Let A ∈Mn×n(F ). The following are equivalent:

(a) det(A) 6= 0,
(b) rank(A) = n,
(c) A is invertible, i.e., A has an inverse.

Proof. Given our algorithm for computing the inverse of a matrix, the equivalence of parts 2
and 3 is evident. To show that parts 1 and 2 are equivalent, recall that by Proposition 1,
we have det(A) = k det(E) where E is the reduced echelon form of A and k is a non-zero
scalar. Thus, det(A) = 0 if and only if det(E) = 0. The rank of A is n if and only if E = In,
in which case det(A) = k 6= 0. The rank of A is strictly less than n if and only if E has a
row of zeros. Since E is upper-triangular, Proposition 2 implies that E has a row of zeros
if and only if det(E) = 0.
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To come:

(a) Define the transpose, At of A by Atij := Aji. Then detAt = detA, and thus, the
determinant is also the unique multilinear, alternating, normalized function on the
columns of a matrix.

(b) The determinant is multiplicative: det(AB) = det(A) det(B).

(c) The determinant may be calculated by “expanding” along any row or column.

(d) We have the following formula for the determinant

detA =
∑
σ∈Sn

sgn(σ)A1σ(1) · · ·Anσ(n)

where Sn is the collection of all permutations of (1, . . . , n) and sgn(σ) is the sign of
the permutation σ (i.e., 1 if the permutation is formed by an even number of flips and
−1 if it is formed by an odd number of flips).

(e) Over the real numbers, the determinant gives the signed volume of the parallelepiped
spanned by the rows (or by the columns) of the matrix.
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