
Math 201 lecture for Monday, Week 6

Linear transformations and matrices I

Our next goal is to encode linear functions by matrices. We first treat the special case of
linear functions of the form Fn → Fm. Next, we consider linear functions V →W between
general finite-dimensional vector spaces. If dimV = n and dimW = m we saw last time
that a choices of bases give isomorphisms V ' Fn and W ' Fm, which reduces the problem
to the special case.

Matrices for linear functions Fn → Fm. The dot product of vectors (a1, . . . , an) and
(b1, . . . , bn) in Fn is defined by

(a1, . . . , an) · (b1, . . . , bn) :=
n∑
i=1

aibi = a1b1 + · · ·+ anbn.

From now on we make adopt the convention of identifying vectors (a1, . . . , an) ∈ Fn with
n× 1 matrices, also called column vectors: a1

...
an

 .

If A ∈ Mm×n(F ) and x = (x1, . . . , xn) ∈ Fn, we define Ax ∈ Fm to be the element of Fm

whose i-th component (Ax)i is the dot product of the i-th row of A with x:

Ax =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn




x1
x2
...
xn

 :=


a11x1 + a12x2 + · · ·+ a1nxn
a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn


= (a11x1 + a12x2 + · · ·+ a1nxn, a21x1 + a22x2 + · · ·+ a2nxn, . . . , am1x1 + am2x2 + · · ·+ amnxn).

The latter equals sign is just making the identification of column vectors with elements
of Fm. Equivalently,

Ax := x1


a11
a21
...

am1

+ x2


a12
a22
...

am2

+ · · ·+ xn


a1n
a2n

...
amn

 .

We could similarly, convert the above notation into a statement about a linear combination
of m-tuples in Fm instead of using column vectors.
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Definition. Let A ∈Mm×n(F ). The linear associated with A is

LA : Fn → Fm

x 7→ Ax.

Exercise. The reader should perform the routine check that LA is a linear function:
LA(x+ λy) = LA(x) + λLA(y).

Examples.

(1) The matrix

A =

(
2 −5 4
3 0 2

)
has corresponding linear mapping

LA : F 3 → F 2

(x, y, z) 7→
(

2x− 5y + 4z
3x+ 2z

)
.

Recall that we are identifying To save space, we could we will write this as

LA : F 3 → F 2

(x, y, z) 7→ (2x− 5y + 4z, 3x+ 2z).

(2) Note that if you were given the linear function LA, you could easily recover the matrix:
just read off the coefficients of each component of LA(x) to find the rows of A. (We will
see another way of recovering A below.) For example, find the matrix corresponding to
the linear function φ : F 3 → F 2 defined by φ(u, v) = (4u− 3v, 6u+ 2v, 3v).

Solution. Reading off the coefficients of each component of φ gives our matrix. Defining

A :=

 4 −3
6 2
0 3

 ,

it is easy to check that φ = LA.

(3) Here are some important special cases of this correspondence between linear functions
and matrices:

LA(x) = (2x, 5x, 7x) ! A =

 2
5
7


LB(w, x, y, z) = w + 2x− 4y + z ! B =

(
1 2 −4 1

)
LC(t) = 8t ! C =

(
8
)
.
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We have formally defined the linear mapping LA associated with a matrix A, and from the
examples above, it may be clear how to go in the other direction to find the matrix of a
given linear function. Here is the formal definition:

Definition. The matrix associated with the linear function L : Fn → Fm is the element A ∈
Mm×n(F ) whose j-th column is L(ej) where ej is the j-th standard basis vector for Fn.

Examples. Consider the first two examples given above.

(1) Consider the linear function L : F 3 → F 2 given by L(x, y, z) = (2x− 5y + 4z, 3x+ 2z).
Evaluate L at the three standard basis vectors for F 3:

L(e1) = L(1, 0, 0) = (2, 3)

L(e2) = L(0, 1, 0) = (−5, 0)

L(e3) = L(0, 0, 1) = (4, 2).

Use these three vectors to form a matrix:

A =

(
2 −5 4
3 0 2

)
.

Thus, L = LA.

(2) Consider the linear function φ : F 3 → F 2 given by φ(u, v) = (4u − 3v, 6u + 2v, 3v).
Then,

φ(1, 0) = (4, 6, 0) and φ(0, 1) = (−3, 2, 3).

Place these vectors as columns to get the matrix 4 −3
6 2
0 3

 .

We have, thus, created a bijective correspondence between linear function Fn → Fm and
matrices in Mm×n(F ).

Matrices for linear functions V →W .

Let V and W be vector spaces with ordered bases B = 〈v1, . . . , vn〉 and D = 〈w1, . . . , wm〉,
respectively. Taking coordinates with respect to these bases yields isomorphisms φB : V →
Fn and φD : W → Fm. For instance, if v ∈ V , we write v =

∑n
i=1 aivi, and then φB(v) :=

(a1, . . . , an). Now suppose we have a linear function f : V → W . So up to now we have
three mappings we are considering:

V W

Fn Fm

φB ∼

f

φD∼
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We now describe how to use this diagram to create a linear function L : Fn → Fm. Since φB
is an isomorphism, we can invert it and then define L by starting at Fn, applying φ−1B to go
up the left-hand side of the diagram arriving at V , then applying f to go to W , and finally
using φD to go from W to Fm. More succinctly, define:

L := φD ◦ f ◦ φ−1B .

In sum, we have the following important commutative diagram:

V W

Fn Fm

φB ∼

f

φD∼

L

Saying the diagram is commutative means the no matter which path we take from V to Fm,
we arrive at the same place, i.e.,

L ◦ φB = φD ◦ f.

Now L is a mapping between tuples and, thus, has a matrix, as discussed at the beginning
of this lecture. To keep track of all of the input data, we use the following, necessarily
complicated, notation for this matrix:

[f ]DB := matrix corresponding to L.

How do we compute this matrix? The algorithm for computing [f ]βα is summarized in
the diagram below:

V W

Fn Fm.

φB ∼

f

φD∼

[f ]DB

vj f(vj)

ej j-th col. of [f ]DB

take coords. wrt. D

In words: since [f ]DB is a matrix, its j-th column is given by [f ]DB (ej). By definition,

[f ]DB (ej) = φD ◦ f ◦ φ−1B (ej) = φD
(
f
(
φ−1B (ej)

))
.

We have φB(vj) = ej . Hence, φ−1B (ej) = vj ∈ V . So,

[f ]DB (ej) = φD
(
f
(
φ−1B (ej)

))
= φD (f(vj)) .

So here is the algorithm for computing [f ]DB :
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To find the j-th column of [f ]DB compute the coordinates of f(vj) with respect
to D = 〈w1, . . . , wm〉 for each vj ∈ B = 〈v1, . . . , vn〉.

Example. Consider linear function f : R2 → R2 given by the matrix

A =

(
1 4
2 3

)
.

Thus, f(x, y) = (x + 4y, 2x + 3y. Using the notation above, we are letting V = W = R2.
Take the same ordered basis for both V and W given by

B = D = 〈(1, 1), (−2, 1)〉.

Find the matrix representing f with respect to this choice of bases for domain and codomain.

Solution. To conform with our earlier notation, we take v1 = (1, 1) and v2 = (−2, 1). First
apply f to each of the basis vectors for V :

f(v1) = (5, 5)

f(v2) = (2,−1).

Next, take the coordinates of these vectors with respect to the basis B for W :

(5, 5) = 5v1 + 0 · v2
(2,−1) = 0 · v1 − v2.

Hence,

φB(v1) = (5, 0)

φB(v2) = (0,−1).

These are the columns for our matrix:

[f ]BB =

(
5 0
0 −1

)
.

We arrive at the commutative diagram:

R2 R2

R2 R2

φB ∼

f

φB∼

L
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Where L is the linear function corresponding to [f ]BB, i.e.,

L(x, y) = (5x,−y).

Example. Consider the linear mapping

f : R[x]≤2 → R[x]≤3

p 7→ xp.

Thus, f consists of multiplying a polynomial by x. Choose bases B = 〈1, x, x2〉 for the
domain and D = 〈1, x, x2, x3〉 for the codomain. Thus, φB(a+bx+cx2) = (a, b, c) and φD(a+
bx + cx2 + dx3) = (a, b, c, d). To find [f ]DB , compute the images of the elements in B and
express them as linear combinations of elements of D:

f(1) = x = 0 · 1 + 1 · x+ 0 · x2 + 0 · x3

f(x) = x2 = 0 · 1 + 0 · x+ 1 · x2 + 0 · x3

f(x2) = x3 = 0 · 1 + 0 · x+ 0 · x2 + 1 · x3.

Therefore,

[f(1)]D = (0, 1, 0, 0)

[f(x)]D = (0, 0, 1, 0)

[f(x2)]D = (0, 0, 0, 1).

These vectors are the columns for our matrix:

[f ]DB =


0 0 0
1 0 0
0 1 0
0 0 1

 .
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