Math 201 lecture for Monday, Week 6

Linear transformations and matrices I

Our next goal is to encode linear functions by matrices. We first treat the special case of
linear functions of the form F™ — F™. Next, we consider linear functions V' — W between
general finite-dimensional vector spaces. If dimV = n and dim W = m we saw last time
that a choices of bases give isomorphisms V ~ F™ and W ~ F" which reduces the problem
to the special case.

MATRICES FOR LINEAR FUNCTIONS F" — F™. The dot product of vectors (a1, ...,a,) and
(b1,...,by) in F™ is defined by
n
(a1, yan) - (bry. . by) =Y abi = arby + -+ + anby.
i=1
From now on we make adopt the convention of identifying vectors (ay,...,a,) € F™ with
n x 1 matrices, also called column vectors:

ai

Qn

If A€ Myxn(F) and & = (z1,...,2,) € F™, we define Ax € F™ to be the element of F™
whose i-th component (Ax); is the dot product of the i-th row of A with x:

a1 a2 ... Gip 1 41171 + @12%2 + - -+ + Q1T
a1 G2 ... Q2p T2 a21x1 + a22T2 + - - - + A2p Ty
Az = ) . ) ) =
aml Am2 --- Omn Tn Am1T1 + Am2Z2 + * - + Gpmn Ty
= (allxl +a12Z2 + -+ a1pTp, 2121 + @222 + -+ A2 Ty -, A1 L1 T+ Q2T + 0+ amnxn).

The latter equals sign is just making the identification of column vectors with elements
of F™. Equivalently,

ail ai2 Aln

a1 a2 a2n
Az =21 } + x2 } +otay

am1 am?2 Gmn

We could similarly, convert the above notation into a statement about a linear combination
of m-tuples in F™ instead of using column vectors.



Definition. Let A € M,,xn(F'). The linear associated with A is

Ly: F* - F™
z — Ax.

Exercise. The reader should perform the routine check that L4 is a linear function:
La(z+Xy) = La(x)+ALa(y).

Examples.

(1)

The matrix

2 —5 4
A_(3 0 2)

has corresponding linear mapping

La: F? — F?

(2,9, 2) < 293—5y+4z>'

3z + 22
Recall that we are identifying To save space, we could we will write this as
La: F? — F?
(x,y,2) — 2z — by + 4z, 3z + 2z).
Note that if you were given the linear function L 4, you could easily recover the matrix:
just read off the coefficients of each component of L 4(x) to find the rows of A. (We will

see another way of recovering A below.) For example, find the matrix corresponding to
the linear function ¢: F® — F? defined by ¢(u,v) = (4u — 3v, 6u + 2v, 3v).

Solution. Reading off the coefficients of each component of ¢ gives our matrix. Defining

4 -3
A=|6 2],
0 3

it is easy to check that ¢ = L 4.

Here are some important special cases of this correspondence between linear functions
and matrices:

Ly(x) = (2x,5z,7x) s A

Il
o

Lp(w,z,y,z) =w+ 2z —4y + z s B:(l 2 —4 1)

Lo(t) =8t  «w  C=(8).



We have formally defined the linear mapping L 4 associated with a matrix A, and from the
examples above, it may be clear how to go in the other direction to find the matrix of a
given linear function. Here is the formal definition:

Definition. The matrix associated with the linear function L: F™ — F"™ is the element A €
M xn(F) whose j-th column is L(e;) where e; is the j-th standard basis vector for F".

Examples. Consider the first two examples given above.

(1) Consider the linear function L: F® — F? given by L(z,y, 2) = (22 — 5y + 4z, 3z + 22).
Evaluate L at the three standard basis vectors for F3:
L(e1) = L(1,0,0) = (2,3)
L(es) = L(0,1,0) = (—5,0)
L(es) = L(0,0,1) = (4, 2).

Use these three vectors to form a matrix:
2 -5 4
A= ( 3 0o 2 ) ’

(2) Consider the linear function ¢: F? — F? given by ¢(u,v) = (4u — 3v,6u + 2v, 3v).
Then,

Thus, L = L4.

#(1,0) = (4,6,0) and ¢(0,1) = (—3,2,3).

Place these vectors as columns to get the matrix

4 -3
6 2
0 3

We have, thus, created a bijective correspondence between linear function F™ — F™ and
matrices in My, xn(F).

MATRICES FOR LINEAR FUNCTIONS V — W.

Let V and W be vector spaces with ordered bases B = (vy,...,v,) and D = (wy, ..., wn),
respectively. Taking coordinates with respect to these bases yields isomorphisms ¢p : V —
F™ and ¢p: W — F™. For instance, if v € V, we write v = Y " | a;0;, and then ¢p(v) :=
(ai,...,an). Now suppose we have a linear function f: V" — W. So up to now we have
three mappings we are considering:

v L w
¢BJ/2 Zidm
Fm Fm



We now describe how to use this diagram to create a linear function L: F™ — F™. Since ¢g
is an isomorphism, we can invert it and then define L by starting at F'", applying gbgl to go
up the left-hand side of the diagram arriving at V', then applying f to go to W, and finally
using ¢p to go from W to F™. More succinctly, define:

L:=¢pofogg
In sum, we have the following important commutative diagram:

v L w

¢>Bl2 Zlﬁb’D
L

Saying the diagram is commutative means the no matter which path we take from V' to F",
we arrive at the same place, i.e.,

Log¢gg=¢pof.

Now L is a mapping between tuples and, thus, has a matrix, as discussed at the beginning
of this lecture. To keep track of all of the input data, we use the following, necessarily
complicated, notation for this matrix:

[f]8 := matrix corresponding to L.

How do we compute this matrix? The algorithm for computing [ f]g is summarized in

the diagram below:
N, —
Uj f(v))

v aw
! dmlz 2 oo take coords. wrt. D
oo U, g

€j ___ ~__5 j-thcol. of [f]lB)
In words: since [f]§ is a matrix, its j-th column is given by [f]E (e;). By definition,
1B (e5) = dp o f o é5' (e5) = dm (f (#5' (e5))) -
We have ¢p(vj) = e;. Hence, ¢5'(e;) = v; € V. So,
[1B(e) = ép (f (957 (e)))) = ¢ (f(v)))-

So here is the algorithm for computing [f]5:



To find the j-th column of | f]g compute the coordinates of f(v;) with respect
to D = (wi,...,wn) for each v; € B= (vi,...,vp).

Example. Consider linear function f: R? — R? given by the matrix

A=<;§>

Thus, f(z,y) = (z + 4y, 2z + 3y. Using the notation above, we are letting V = W = R2.
Take the same ordered basis for both V and W given by

B=D=((1,1),(~2,1)).

Find the matrix representing f with respect to this choice of bases for domain and codomain.

Solution. To conform with our earlier notation, we take v; = (1,1) and v = (—2,1). First
apply f to each of the basis vectors for V:

flvr) = (5,5)
flvg) = (2, -1).

Next, take the coordinates of these vectors with respect to the basis B for W:

(5,5)=5U1+0~Ug
(2,-1)=0-v; — va.

Hence,

¢5(v1) = (5,0)
¢5(v2) = (0,-1).

These are the columns for our matrix:

nE= (o 1)

We arrive at the commutative diagram:

r? L R2

¢Bi2 Zima

R2 L, R2



Where L is the linear function corresponding to | f]g, ie.,

Example. Consider the linear mapping

f: R[l’]gg — R[:L’]Sg
D = Tp.

Thus, f consists of multiplying a polynomial by x. Choose bases B = (1,z,2?%) for the
domain and D = (1, z, 22, 23) for the codomain. Thus, ¢g(a+br+cx?) = (a,b,c) and ¢p(a+
bz + cx? + da3) = (a,b,c,d). To find [f]E, compute the images of the elements in B and
express them as linear combinations of elements of D:

f)=2=0-141-2+0-2°4+0-2°

fx)=2?=0-1+0-2+1-22+0-23

Therefore,

(1)]p = (0,1,0,0)
[f(z)]p = (0,0,1,0)
[f(2*)]p = (0,0,0,1).

These vectors are the columns for our matrix:

0 0 0
» | 1 oo
0 01



