Math 201 lecture for Wednesday, Week 5

Range and nullspace

Recall the definition of a linear function from last time: a function $f: V \to W$ between vectors spaces V and W over the (same) field F is a function $f: V \to W$ that preserves addition and scalar multiplication. In detail, this means that for all $u, v \in V$ and $\lambda \in F$,

$$f(u+v) = f(u) + f(v)$$
 and $f(\lambda v) = \lambda f(v)$.

Definition/Proposition 1. Suppose $f: V \to W$ is linear and $U \subseteq V$ is a subspace of V. Then the *image of* U under f is the set

$$f(U) := \{f(u) : u \in U\} \subseteq W.$$

The image of U under f is a subspace of W.

Proof. Since U is a subspace of V, it follows that $0_V \in U$, and hence, $f(0_V) = 0_W \in f(U)$. Thus, f(U) is nonempty. Next, let $x, y \in f(U)$, and let $\lambda \in F$. By definition of f(U), there are vectors $u, v \in U$ such that f(u) = x and f(v) = y. Then since f is linear, is preserves addition and scalar multiplication. Therefore,

$$x + \lambda y = f(u) + \lambda f(v)$$

= $f(u) + f(\lambda v)$
= $f(u + \lambda v)$.

Since U is a subspace, it is closed under addition and scalar multiplication. Therefore, $u + \lambda v \in U$. It follows that $x + \lambda y = f(u + \lambda v) \in f(U)$, as required.

In particular, since V is a subspace of itself, its image under a linear function is a subspace of the codomain of the function.

Definition. The *image* or *range* of a linear function $f: V \to W$ is the subspace

$$\operatorname{im}(f) := \mathcal{R}(f) := f(V) := \{f(v) : v \in V\} \subseteq W$$

The dimension of the image of f is the rank of f (provided it is finite-dimensional) and is denoted rank(f) or rk(f).

Example. Define a linear function $f \colon \mathbb{R}^2 \to \mathbb{R}^3$ by letting f(1,0) = (2,1,0) and f(0,1) = (0,-1,1) and extending linearly. Thus, for all $x, y \in \mathbb{R}$,

$$f(x,y) = f(x(1,0) + y(0,1))$$

= $xf(1,0) + yf(0,1)$
= $x(2,1,0) + y(0,-1,1)$

We have

$$\operatorname{im}(f) = \mathcal{R}(f) = \operatorname{Span}\{(2, 1, 0), (0, -1, 1)\}$$

Since (2, 1, 0) and (0, -1, 1) are linearly independent and span the image, they are a basis for the image of f, and thus, rank(f) = 2.

Remark. If $f: V \to W$ is a linear function, and $B = \{b_1, \ldots, b_n\}$ is a basis for V, then

$$\operatorname{im}(f) = \operatorname{Span}(f(B)) := \operatorname{Span}\{f(b_1), \dots, f(b_n)\}$$

since $f(\sum_{i=1}^{n} \alpha_i b_i) = \sum_{i=1}^{n} \alpha_i f(b_i)$. However, f(B) is not necessarily a basis for im(f).

Definition/Proposition 2. Let $f: V \to W$ be a linear mapping, and let U be a subspace of W. Then the *inverse image of* U under f is the set

$$f^{-1}(U) := \{ v \in V : f(v) \in U \} \subseteq V.$$

The inverse image of U under f is a subspace of V.

Proof. Since U is a subspace of W, we know $0_W \in U$. Then, since $f(0_V) = 0_W$, it follows that $0_V \in f^{-1}(U)$. So $f^{-1}(U)$ is nonempty. Next, let $v, v' \in f^{-1}(U)$, and let $\lambda \in F$. It follows that $f(v) \in U$ and $f(v') \in U$. Since U is a subspace, it follows that $f(v) + \lambda f(v') \in U$. Since f is linear,

$$f(v + \lambda v') = f(v) + \lambda f(v') \in U.$$

It follows that $v + \lambda v' \in f^{-1}(U)$.

Definition. Let $f: V \to W$ be a linear mapping. The kernel or nullspace of f, denoted ker f or $\mathcal{N}(f)$, respectively, is the inverse image of $\{0_W\}$:

$$\ker(f) := \mathcal{N}(f) := f^{-1}(\{0_W\}) := \{v \in V : f(v) = 0\}$$

It is a subspace of V (by Proposition 2). The dimension of the kernel is called the *nullity* of f (provided it is finite-dimensional) and is denoted nullity(f).

Example. Consider the linear mapping

$$f \colon \mathbb{R}^2 \to \mathbb{R}^3$$
$$(x, y) \mapsto (2x, x - y, y).$$

To find the kernel of f, we look for vectors (x, y) such that

$$f(x, y) = (2x, x - y, y) = (0, 0, 0).$$

Comparing vector components, we see that x = y = 0 is the only possibility. Therefore,

$$\ker(f) = \{(0,0)\},\$$

and $\operatorname{nullity}(f) = 0.$

Example. Let $\mathbb{R}[x]_{\leq 2}$ denote polynomials in x of degree at most two and with real coefficients. Consider the linear mapping

$$f \colon \mathbb{R}[x]_{\leq 2} \longrightarrow \mathbb{R}^2$$
$$a + bx + cx^2 \mapsto (a + b, a + c).$$

To find the kernel of f, we need to find a, b, c such that $f(a + bx + cx^2) = (0, 0)$. This amounts to solving the system of equations

$$a+b=0$$
$$a+c=0$$

Apply our algorithm:

$$\left(\begin{array}{ccc|c} 1 & 1 & 0 & 0\\ 1 & 0 & 1 & 0 \end{array}\right) \rightsquigarrow \left(\begin{array}{ccc|c} 1 & 0 & 1 & 0\\ 0 & 1 & -1 & 0 \end{array}\right). \tag{*}$$

Solving for the pivot variables, we get

$$a = -c$$
$$b = c.$$

Therefore,

$$\ker(f) = \{-c + cx + cx^2 : c \in \mathbb{R}\} = \operatorname{Span}\{-1 + x + x^2\}$$

Therefore, the nullity of f is dim(ker(f) = 1. A basis for $\mathbb{R}[x]_{\leq 2}$ is the set $\{1, x, x^2\}$, and the image of these vectors forms a basis for the image of f:

$$f(1) = (1,1), \quad f(x) = (1,0), \quad f(x^2) = (0,1).$$

So the image of f is the column space of the matrix for the linear system we solved to find the kernel (cf. Equation (\star)). Using our algorithm for finding the basis of the column space, we get the basis {(1,1), (1,0)}. Another basis is {(1,0), (0,1)}. Therefore, the rank of fis rank(f) = 2.

Our main goal next time will to prove the following:

Theorem. (Rank-nullity theorem) Let $f: V \to W$ be a linear mapping, and suppose that V is finite-dimensional. Then

$$\operatorname{rank}(f) + \operatorname{nullity}(f) = \dim V.$$

In other words, $\dim(\operatorname{im}(f)) + \dim(\ker(f)) = \dim V$.

Example. In the previous example, we found

$$\operatorname{rank}(f) + \operatorname{nullity}(f) = 2 + 1 = 3 = \dim \mathbb{R}[x]_{\leq 2}.$$